These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37764373)

  • 1. Computational Studies on Diverse Characterizations of Molecular Descriptors for Graphyne Nanoribbon Structures.
    Raza MA; Mahmood MK; Imran M; Tchier F; Ahmad D; Masood MK
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced reverse degree-based topological indices of graphyne and graphdiyne nanoribbons with applications in chemical analysis.
    Zaman S; Hakami KH; Rasheed S; Agama FT
    Sci Rep; 2024 Jan; 14(1):547. PubMed ID: 38177204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne.
    Hou X; Xie Z; Li C; Li G; Chen Z
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29370070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic properties of four typical zigzag-edged graphyne nanoribbons.
    Yu G; Liu Z; Gao W; Zheng Y
    J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational and thermodynamic properties of α-, β-, γ-, and 6, 6, 12-graphyne structures.
    Perkgöz NK; Sevik C
    Nanotechnology; 2014 May; 25(18):185701. PubMed ID: 24737253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design.
    Ni Y; Wang X; Tao W; Zhu SC; Yao KL
    Sci Rep; 2016 May; 6():25914. PubMed ID: 27180808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Interference of Protein-Protein Interactions by Graphyne.
    Luan B; Huynh T; Zhou R
    J Phys Chem B; 2016 Mar; 120(9):2124-31. PubMed ID: 26885561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology.
    Peng Q; Dearden AK; Crean J; Han L; Liu S; Wen X; De S
    Nanotechnol Sci Appl; 2014; 7():1-29. PubMed ID: 24808721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor.
    Asadpour M; Jafari M; Asadpour M; Jafari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain Investigation on Spin-Dependent Transport Properties of γ-Graphyne Nanoribbon Between Gold Electrodes.
    Li Y; Li X; Zhang S; Cao L; Ouyang F; Long M
    Nanoscale Res Lett; 2021 Jan; 16(1):5. PubMed ID: 33409606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Elastocaloric Effects in γ-Graphyne.
    Kanegae GB; Pereira Junior ML; Galvão DS; Ribeiro Junior LA; Fonseca AF
    ACS Appl Mater Interfaces; 2024 May; ():. PubMed ID: 38706297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transport properties and new device design: the case of 6,6,12-graphyne nanoribbons.
    Ni Y; Yao KL; Fu HH; Gao GY; Zhu SC; Luo B; Wang SL; Li RX
    Nanoscale; 2013 May; 5(10):4468-75. PubMed ID: 23584607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphyne and Its Family: Recent Theoretical Advances.
    Kang J; Wei Z; Li J
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2692-2706. PubMed ID: 29663794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Hole Geometry on the Nonlinear Nanomechanics of
    Georgantzinos SK; Siampanis SG; Rogkas N; Spitas V
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Analysis of an α-Graphyne Nano-Field Effect Transistor.
    Khan H; Islam MM; Roya RI; Azad SN; Alam M
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Strain Rate, Temperature, Vacancy, and Microcracks on Mechanical Properties of 8-16-4 Graphyne.
    Peng Q; Huang Z; Chen G; Zhang Y; Zhang X; Chen XJ; Hu Z
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted Mostar indices as measures of molecular peripheral shapes with applications to graphene, graphyne and graphdiyne nanoribbons.
    Arockiaraj M; Clement J; Tratnik N; Mushtaq S; Balasubramanian K
    SAR QSAR Environ Res; 2020 Mar; 31(3):187-208. PubMed ID: 31960721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of radiaannulene oligomers to model the elusive carbon allotrope 6,6,12-graphyne.
    Kilde MD; Murray AH; Andersen CL; Storm FE; Schmidt K; Kadziola A; Mikkelsen KV; Hampel F; Hammerich O; Tykwinski RR; Nielsen MB
    Nat Commun; 2019 Aug; 10(1):3714. PubMed ID: 31420550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new perspective on the modeling and topological characterization of H-Naphtalenic nanosheets with applications.
    Ullah A; Zeb A; Zaman S
    J Mol Model; 2022 Jul; 28(8):211. PubMed ID: 35790576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.