These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37764561)

  • 1. Composition of Vapor-Liquid-Solid III-V Ternary Nanowires Based on Group-III Intermix.
    Dubrovskii VG
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circumventing the Uncertainties of the Liquid Phase in the Compositional Control of VLS III-V Ternary Nanowires Based on Group V Intermix.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires.
    Leshchenko ED; Dubrovskii VG
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of Kinetic and Thermodynamic Factors in the Stationary Composition of Vapor-Liquid-Solid IIIV
    Dubrovskii VG; Leshchenko ED
    Nanomaterials (Basel); 2024 Aug; 14(16):. PubMed ID: 39195371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Thermodynamics and Kinetics in the Composition of Ternary III-V Nanowires.
    Leshchenko ED; Johansson J
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33353245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Consistent Model for the Compositional Profiles in Vapor-Liquid-Solid III-V Nanowire Heterostructures Based on Group V Interchange.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon.
    Hijazi H; Zeghouane M; Dubrovskii VG
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modeling of interfacial abruptness in axial nanowire heterostructures.
    Leshchenko ED; Dubrovskii VG
    Nanotechnology; 2022 Nov; 34(6):. PubMed ID: 36356307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating Vapor-Liquid-Solid Growth of Au-Seeded InGaAs Nanowires.
    Mårtensson EK; Johansson J; Dick KA
    ACS Nanosci Au; 2022 Jun; 2(3):239-249. PubMed ID: 37101824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compositional Correlation between the Nanoparticle and the Growing Au-Assisted In
    Sjökvist R; Jacobsson D; Tornberg M; Wallenberg R; Leshchenko ED; Johansson J; Dick KA
    J Phys Chem Lett; 2021 Aug; 12(31):7590-7595. PubMed ID: 34347497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of In
    Hu YL; Zhu Y; Ji H; Luo Q; Fu A; Wang X; Xu G; Yang H; Lian J; Sun J; Sun D; Wang D
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30501038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition.
    Lim SK; Tambe MJ; Brewster MM; Gradecak S
    Nano Lett; 2008 May; 8(5):1386-92. PubMed ID: 18386937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In(x)Ga(1-x)As nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology.
    Ameruddin AS; Fonseka HA; Caroff P; Wong-Leung J; Op het Veld RL; Boland JL; Johnston MB; Tan HH; Jagadish C
    Nanotechnology; 2015 May; 26(20):205604. PubMed ID: 25927420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?
    Hijazi H; Monier G; Gil E; Trassoudaine A; Bougerol C; Leroux C; Castellucci D; Robert-Goumet C; Hoggan PE; André Y; Isik Goktas N; LaPierre RR; Dubrovskii VG
    Nano Lett; 2019 Jul; 19(7):4498-4504. PubMed ID: 31203632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. At the Limit of Interfacial Sharpness in Nanowire Axial Heterostructures.
    Hilliard D; Tauchnitz T; Hübner R; Vasileiadis I; Gkotinakos A; Dimitrakopulos G; Komninou P; Sun X; Winnerl S; Schneider H; Helm M; Dimakis E
    ACS Nano; 2024 Aug; 18(32):21171-21183. PubMed ID: 38970499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharpening the Interfaces of Axial Heterostructures in Self-Catalyzed AlGaAs Nanowires: Experiment and Theory.
    Priante G; Glas F; Patriarche G; Pantzas K; Oehler F; Harmand JC
    Nano Lett; 2016 Mar; 16(3):1917-24. PubMed ID: 26840359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In
    Otnes G; Heurlin M; Zeng X; Borgström MT
    Nano Lett; 2017 Feb; 17(2):702-707. PubMed ID: 28054783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy.
    Dubrovskii VG; Sibirev NV; Cirlin GE; Harmand JC; Ustinov VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021603. PubMed ID: 16605346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the Length and Radius of Catalyst-Free III-V Nanowires Grown by Selective Area Epitaxy.
    Dubrovskii VG
    ACS Omega; 2019 May; 4(5):8400-8405. PubMed ID: 31459928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.