BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37764564)

  • 21.
    Ibarra D; Martín-Sampedro R; Wicklein B; Borrero-López AM; Valencia C; Valdehíta A; Navas JM; Eugenio ME
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of pre-treatments mediated by endoglucanase and TEMPO oxidation for eco-friendly low-cost energy production of cellulose nanofibrils.
    de Amorim Dos Santos A; Silva MJFE; Scatolino MV; Durães AFS; Dias MC; Damásio RAP; Tonoli GHD
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4934-4948. PubMed ID: 35978240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging Food Packaging Applications of Cellulose Nanocomposites: A Review.
    Li J; Zhang F; Zhong Y; Zhao Y; Gao P; Tian F; Zhang X; Zhou R; Cullen PJ
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotechnology Applied to Cellulosic Materials.
    Fernandes A; Cruz-Lopes L; Esteves B; Evtuguin D
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods.
    Van Hai L; Zhai L; Kim HC; Kim JW; Choi ES; Kim J
    Carbohydr Polym; 2018 Jul; 191():65-70. PubMed ID: 29661322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers.
    Park JY; Park CW; Han SY; Kwon GJ; Kim NH; Lee SH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties.
    Xu H; Sanchez-Salvador JL; Blanco A; Balea A; Negro C
    Carbohydr Polym; 2023 Nov; 319():121168. PubMed ID: 37567710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper.
    Hu F; Zeng J; Cheng Z; Wang X; Wang B; Zeng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117474. PubMed ID: 33357928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and Antibacterial Properties of Autoclaved Carboxylated Wood Nanocellulose.
    Chinga-Carrasco G; Johansson J; Heggset EB; Leirset I; Björn C; Agrenius K; Stevanic JS; Håkansson J
    Biomacromolecules; 2021 Jul; 22(7):2779-2789. PubMed ID: 34185505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scalable Preparation of Cellulose Nanofibers from Office Waste Paper by an Environment-Friendly Method.
    Huang D; Hong H; Huang W; Zhang H; Hong X
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment.
    Kumari P; Pathak G; Gupta R; Sharma D; Meena A
    Daru; 2019 Dec; 27(2):683-693. PubMed ID: 31654377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency.
    Trigui K; De Loubens C; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Jul; 240():116342. PubMed ID: 32475596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Comparative Study on the Characterization of Nanofibers with Cellulose I, I/II, and II Polymorphs from Wood.
    Wang H; Li S; Wu T; Wang X; Cheng X; Li D
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanofibrillated cellulose as an additive in papermaking process: A review.
    Boufi S; González I; Delgado-Aguilar M; Tarrès Q; Pèlach MÀ; Mutjé P
    Carbohydr Polym; 2016 Dec; 154():151-66. PubMed ID: 27577906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation.
    Zhao Y; Moser C; Lindström ME; Henriksson G; Li J
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13508-13519. PubMed ID: 28350431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanocellulose from Spanish Harvesting Residues to Improve the Sustainability and Functionality of Linerboard Recycling Processes.
    De Haro-Niza J; Rincón E; Gonzalez Z; Espinosa E; Rodríguez A
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils.
    Aimonen K; Imani M; Hartikainen M; Suhonen S; Vanhala E; Moreno C; Rojas OJ; Norppa H; Catalán J
    Part Fibre Toxicol; 2022 Mar; 19(1):19. PubMed ID: 35296350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.