These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37764610)

  • 1. A Review of Yarn-Based One-Dimensional Supercapacitors.
    Han D; Kim M; Lee S; Choi C
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Stretchable Supercapacitors Enabled by Low-Dimensional Nanomaterials.
    Cao C; Chu Y; Zhou Y; Zhang C; Qu S
    Small; 2018 Dec; 14(52):e1803976. PubMed ID: 30450784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors.
    Choi C; Kim KM; Kim KJ; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Nat Commun; 2016 Dec; 7():13811. PubMed ID: 27976668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-Stickable Yarn Supercapacitors with Vaper Phase Polymerized Multi-Layered Polypyrrole Electrodes for Smart Garments.
    Zhao C; Wan T; Yuan W; Zheng Z; Jia X; Shu K; Feng L; Min Y
    Macromol Rapid Commun; 2022 Oct; 43(20):e2200347. PubMed ID: 35686689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress on Flexible and Wearable Supercapacitors.
    Xue Q; Sun J; Huang Y; Zhu M; Pei Z; Li H; Wang Y; Li N; Zhang H; Zhi C
    Small; 2017 Dec; 13(45):. PubMed ID: 28941073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors.
    Wang Z; Qin S; Seyedin S; Zhang J; Wang J; Levitt A; Li N; Haines C; Ovalle-Robles R; Lei W; Gogotsi Y; Baughman RH; Razal JM
    Small; 2018 Sep; 14(37):e1802225. PubMed ID: 30084530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors.
    Dong K; Wang YC; Deng J; Dai Y; Zhang SL; Zou H; Gu B; Sun B; Wang ZL
    ACS Nano; 2017 Sep; 11(9):9490-9499. PubMed ID: 28901749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Novel Wearable, Stretchable, and Waterproof Cable-Type Supercapacitors Based on High-Performance Nickel Cobalt Sulfide-Coated Etching-Annealed Yarn Electrodes.
    Chen Y; Xu B; Wen J; Gong J; Hua T; Kan CW; Deng J
    Small; 2018 May; 14(21):e1704373. PubMed ID: 29675877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles.
    Zhang D; Miao M; Niu H; Wei Z
    ACS Nano; 2014 May; 8(5):4571-9. PubMed ID: 24754666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-Blown Aligned Nanofiber Yarn and Its Application in Yarn-Shaped Supercapacitor.
    Yang J; Mao Z; Zheng R; Liu H; Shi L
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers.
    Zhao Z; Xia K; Hou Y; Zhang Q; Ye Z; Lu J
    Chem Soc Rev; 2021 Nov; 50(22):12702-12743. PubMed ID: 34643198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics.
    Kou L; Huang T; Zheng B; Han Y; Zhao X; Gopalsamy K; Sun H; Gao C
    Nat Commun; 2014 May; 5():3754. PubMed ID: 24786366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring.
    Binfaris AS; Zestos AG; Abot JL
    Energies (Basel); 2023 Aug; 16(15):. PubMed ID: 37693369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper-Derived Millimeter-Thick Yarn Supercapacitors Enabling High Volumetric Energy Density.
    Heo YJ; Lee JH; Kim SH; Mun SJ; Lee SY; Park SJ
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42671-42682. PubMed ID: 36043943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials.
    Lyu L; Hooch Antink W; Kim YS; Kim CW; Hyeon T; Piao Y
    Small; 2021 Sep; 17(36):e2101974. PubMed ID: 34323350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.