BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37764903)

  • 1.
    Yüksel E; Yıldırım A; İmren M; Canhilal R; Dababat AA
    Pathogens; 2023 Aug; 12(9):. PubMed ID: 37764903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae).
    Ünal M; Yüksel E; Canhilal R
    Exp Parasitol; 2022 Nov; 242():108394. PubMed ID: 36179855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insecticidal activities of the local entomopathogenic nematodes and cell-free supernatants from their symbiotic bacteria against the larvae of fall webworm, Hyphantriacunea.
    Yüksel E; Özdemir E; Albayrak Delialioğlu R; Canhilal R
    Exp Parasitol; 2022 Nov; 242():108380. PubMed ID: 36116520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Biocontrol Potential of Entomopathogenic Nematodes and Their Endosymbiotic Bacteria in Apple Orchards against the Codling Moth,
    Gümüşsoy A; Yüksel E; Özer G; İmren M; Canhilal R; Amer M; Dababat AA
    Insects; 2022 Nov; 13(12):. PubMed ID: 36554995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A
    Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus.
    Subkrasae C; Ardpairin J; Dumidae A; Janthu P; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A
    Acta Trop; 2022 Nov; 235():106668. PubMed ID: 36030882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).
    Luiz Rosa da Silva J; Undurraga Schwalm F; Eugênio Silva C; da Costa M; Heermann R; Santos da Silva O
    J Econ Entomol; 2017 Apr; 110(2):378-385. PubMed ID: 28062794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus.
    Yooyangket T; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A
    PLoS One; 2018; 13(4):e0195681. PubMed ID: 29641570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entomopathogenic Nematodes and Their Symbiotic Bacteria from the National Parks of Thailand and Larvicidal Property of Symbiotic Bacteria against
    Thanwisai A; Muangpat P; Meesil W; Janthu P; Dumidae A; Subkrasae C; Ardpairin J; Tandhavanant S; Yoshino TP; Vitta A
    Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36421372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).
    da Silva OS; Prado GR; da Silva JL; Silva CE; da Costa M; Heermann R
    Parasitol Res; 2013 Aug; 112(8):2891-6. PubMed ID: 23728731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larvicidal Activities of Indigenous
    Ahmed AM; Hussein HI; El-Kersh TA; Al-Sheikh YA; Ayaad TH; El-Sadawy HA; Al-Mekhlafi FA; Ibrahim MS; Al-Tamimi J; Nasr FA
    J Arthropod Borne Dis; 2017 Jun; 11(2):260-277. PubMed ID: 29062851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens.
    El-Sadawy HA; El Namaky AH; Hafez EE; Baiome BA; Ahmed AM; Ashry HM; Ayaad TH
    Trop Biomed; 2018 Jun; 35(2):392-407. PubMed ID: 33601813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mixture of Bacillus thuringiensis subsp. israelensis With Xenorhabdus nematophila -Cultured Broth Enhances Toxicity Against Mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae).
    Park Y; Kyo Jung J; Kim Y
    J Econ Entomol; 2016 Mar; 109(3):1086-1093. PubMed ID: 27018440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae).
    Eroglu C; Cimen H; Ulug D; Karagoz M; Hazir S; Cakmak I
    J Invertebr Pathol; 2019 Jan; 160():61-66. PubMed ID: 30528928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening and Molecular Identification of Bacteria from the Midgut of
    Skowronek M; Sajnaga E; Kazimierczak W; Lis M; Wiater A
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological control of Phlebotomus papatasi larvae by using entomopathogenic nematodes and its symbiotic bacterial toxins.
    El-Sadawy HA; Ramadan MY; Abdel Megeed KN; Ali HH; El Sattar SA; Elakabawy LM
    Trop Biomed; 2020 Jun; 37(2):288-302. PubMed ID: 33612799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Use of Entomopathogenic Nematodes and the Natural Products Derived from Their Symbiotic Bacteria to Control the Grapevine Moth,
    Vicente-Díez I; Blanco-Pérez R; Chelkha M; Puelles M; Pou A; Campos-Herrera R
    Insects; 2021 Nov; 12(11):. PubMed ID: 34821833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the Sublethal Effects of
    Giatropoulos A; Koliopoulos G; Pantelakis PN; Papachristos D; Michaelakis A
    Insects; 2023 Apr; 14(4):. PubMed ID: 37103215
    [No Abstract]   [Full Text] [Related]  

  • 19. Virulence of entomopathogenic nematodes and their symbiotic bacteria, under laboratory conditions, aiming controlling Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) on sugarcane.
    Monteiro GG; Paulo HH; Nascimento DD; Pelegrini G; Lacerda LM; Chacon-Orozco J; Leite LG; Polanczyk RA
    Braz J Biol; 2022; 84():e253780. PubMed ID: 35137847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae).
    Tabari MA; Youssefi MR; Esfandiari A; Benelli G
    Res Vet Sci; 2017 Oct; 114():36-40. PubMed ID: 28297637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.