These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37765181)

  • 41. Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers.
    Kang JY; Choi I; Seo M; Lee JY; Hong S; Gong G; Shin SS; Lee Y; Kim JW
    J Colloid Interface Sci; 2020 Mar; 561():318-326. PubMed ID: 31740134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.
    Lira RB; Dimova R; Riske KA
    Biophys J; 2014 Oct; 107(7):1609-19. PubMed ID: 25296313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ca-mediated electroformation of cell-sized lipid vesicles.
    Tao F; Yang P
    Sci Rep; 2015 May; 5():9839. PubMed ID: 25950604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Raman Spectroscopy Study of Curvature-Mediated Lipid Packing and Sorting in Single Lipid Vesicles.
    Collard L; Sinjab F; Notingher I
    Biophys J; 2019 Nov; 117(9):1589-1598. PubMed ID: 31587827
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane fusion of giant unilamellar vesicles of neutral phospholipid membranes induced by La3+.
    Tanaka T; Yamazaki M
    Langmuir; 2004 Jun; 20(13):5160-4. PubMed ID: 15986643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruption of phospholipid membranes.
    Goršak T; Drab M; Križaj D; Jeran M; Genova J; Kralj S; Lisjak D; Kralj-Iglič V; Iglič A; Makovec D
    J Colloid Interface Sci; 2020 Nov; 579():508-519. PubMed ID: 32623117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bulk Self-Assembly of Giant, Unilamellar Vesicles.
    Kindt JT; Szostak JW; Wang A
    ACS Nano; 2020 Nov; 14(11):14627-14634. PubMed ID: 32602696
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and characterization of monodisperse unilamellar phospholipid vesicles with selected diameters of from 300 to 600 nm.
    Aurora TS; Li W; Cummins HZ; Haines TH
    Biochim Biophys Acta; 1985 Nov; 820(2):250-8. PubMed ID: 4052421
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lipid Giant Vesicles Engulf Living Bacteria Triggered by Minor Enhancement in Membrane Fluidity.
    Dai S; Tang X; Zhang N; Li H; He C; Han Y; Wang Y
    Nano Lett; 2023 Jan; 23(1):371-379. PubMed ID: 36441573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ciprofloxacin encapsulation into giant unilamellar vesicles: membrane binding and release.
    Kaszás N; Bozó T; Budai M; Gróf P
    J Pharm Sci; 2013 Feb; 102(2):694-705. PubMed ID: 23233199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y; Ohba T; Miyata H; Ohki K
    Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
    Wesołowska O; Michalak K; Maniewska J; Hendrich AB
    Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of cholesterol on the anionic magnetite nanoparticle-induced deformation and poration of giant lipid vesicles.
    Akter S; Karal MAS; Hasan S; Ahamed MK; Ahmed M; Ahammed S
    RSC Adv; 2022 Oct; 12(44):28283-28294. PubMed ID: 36320506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.