These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37765215)

  • 1. In-Line Detection of Bed Fluidity in Gas-Solid Fluidized Beds Using Near-Infrared Spectroscopy.
    Fu H; Teng K; Zhao J; Zhang S; Qu H
    Pharmaceutics; 2023 Aug; 15(9):. PubMed ID: 37765215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.
    Liu R; Li L; Yin W; Xu D; Zang H
    Int J Pharm; 2017 Sep; 530(1-2):308-315. PubMed ID: 28743552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A system for measuring bubble voidage and frequency around tubes immersed in a fluidized bed of particles.
    Whitty KJ; Siddoway M
    Rev Sci Instrum; 2010 Jul; 81(7):073305. PubMed ID: 20687715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of moisture content and particle size in a fluidized bed granulation process using near infrared spectroscopy and acoustic emission combined with data fusion strategies.
    Fu H; Teng K; Shen Y; Zhao J; Qu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123441. PubMed ID: 37748230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Particle Diameter and Inlet Flow Rate on Gas-Solid Flow Patterns of Fluidized Bed.
    Zhao Z; Zhou L; Bai L; Lv W; Agarwal RK
    ACS Omega; 2023 Feb; 8(7):7151-7162. PubMed ID: 36844538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Granulation of Yangxue Qingnao Granules in fluidized bed based on near-infrared spectroscopy].
    Zhang DW; Tian G; Xiong HS; Zhang Q; Zhang SN; Cai JY; Su J; Zhu YH; Yan KJ
    Zhongguo Zhong Yao Za Zhi; 2022 Jul; 47(14):3806-3815. PubMed ID: 35850838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Fluidization Quality Characterization Method and Process Intensification of Fine Coal Separation in a Vibrated Dense Medium Fluidized Bed.
    Zhou E; Shan Y; Li L; Shen F; Byambajav E; Zhang B; Shi C
    ACS Omega; 2021 Jun; 6(22):14268-14277. PubMed ID: 34124450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deagglomeration of Ultrafine Hydrophilic Nanopowder Using Low-Frequency Pulsed Fluidization.
    Al-Ghurabi EH; Shahabuddin M; Kumar NS; Asif M
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32102201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed.
    Tok AT; Goh X; Ng WK; Tan RB
    AAPS PharmSciTech; 2008; 9(4):1083-91. PubMed ID: 18850276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of vibration on the stability of a gas-fluidized bed of fine powder.
    Valverde JM; Castellanos A; Quintanilla MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021302. PubMed ID: 11497573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics derived dataset for evaluation of mixing of a secondary solid phase in a circulating fluidized bed riser.
    Nikku M; Myöhänen K; Ritvanen J; Hyppänen T
    Data Brief; 2023 Jun; 48():109039. PubMed ID: 36969968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical correlations in two-phase modeling of fluidized bed adsorbers.
    Davarpanah M; Hashisho Z; Crompton D; Anderson JE
    J Hazard Mater; 2022 Feb; 423(Pt B):127218. PubMed ID: 34547691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method development and validation of a near-infrared spectroscopic method for in-line API quantification during fluidized bed granulation.
    Zhong L; Gao L; Li L; Nei L; Wei Y; Zhang K; Zhang H; Yin W; Xu D; Zang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jun; 274():121078. PubMed ID: 35248859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on Bed Density in a Gas-Vibro Fluidized Bed for Coal Cleaning.
    Zhou C; Dong L; Zhao Y; Fan X
    ACS Omega; 2019 Jul; 4(7):12817-12826. PubMed ID: 31460406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis.
    Findlay WP; Peck GR; Morris KR
    J Pharm Sci; 2005 Mar; 94(3):604-12. PubMed ID: 15666297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process analysis of fluidized bed granulation.
    Rantanen J; Jørgensen A; Räsänen E; Luukkonen P; Airaksinen S; Raiman J; Hänninen K; Antikainen O; Yliruusi J
    AAPS PharmSciTech; 2001 Oct; 2(4):21. PubMed ID: 14727858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Line Monitoring of a High-Shear Granulation Process Using the Baseline Shift of Near Infrared Spectra.
    Kuriyama A; Osuga J; Hattori Y; Otsuka M
    AAPS PharmSciTech; 2018 Feb; 19(2):710-718. PubMed ID: 28971383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Assisted Experimental Characterization of Bubble Dynamics in Gas-Solid Fluidized Beds.
    Jiang S; Wu K; Francia V; Ouyang Y; Coppens MO
    Ind Eng Chem Res; 2024 May; 63(19):8819-8832. PubMed ID: 38765275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between pressure fluctuations and generation of organic pollutants with different particle size distributions in a fluidized bed incinerator.
    Lin CL; Wey MY; Cheng HT
    Chemosphere; 2004 Sep; 56(10):911-22. PubMed ID: 15268957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic characteristics of immobilized cell beads in a liquid-solid fluidized-bed bioreactor.
    Wu JY; Chen KC; Chen CT; Hwang SC
    Biotechnol Bioeng; 2003 Sep; 83(5):583-94. PubMed ID: 12827700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.