BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37765240)

  • 1. Influence of Surface Ligand Density and Particle Size on the Penetration of the Blood-Brain Barrier by Porous Silicon Nanoparticles.
    Zhang W; Zhu D; Tong Z; Peng B; Cheng X; Esser L; Voelcker NH
    Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma.
    Luo M; Lewik G; Ratcliffe JC; Choi CHJ; Mäkilä E; Tong WY; Voelcker NH
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33637-33649. PubMed ID: 31433156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multifunctional Porous Silicon Nanocarrier for Glioblastoma Treatment.
    Luo M; Li Y; Peng B; White J; Mäkilä E; Tong WY; Jonathan Choi CH; Day B; Voelcker NH
    Mol Pharm; 2023 Jan; 20(1):545-560. PubMed ID: 36484477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood-Brain Barrier.
    Brown TD; Habibi N; Wu D; Lahann J; Mitragotri S
    ACS Biomater Sci Eng; 2020 Sep; 6(9):4916-4928. PubMed ID: 33455287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy.
    De Jong E; Williams DS; Abdelmohsen LKEA; Van Hest JCM; Zuhorn IS
    J Control Release; 2018 Nov; 289():14-22. PubMed ID: 30243824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of nanoparticle size on blood-brain barrier penetration and the accumulation of anti-seizure medicines in the brain.
    Meng Q; Meng H; Pan Y; Liu J; Li J; Qi Y; Huang Y
    J Mater Chem B; 2022 Jan; 10(2):271-281. PubMed ID: 34897348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport.
    Wevers NR; Kasi DG; Gray T; Wilschut KJ; Smith B; van Vught R; Shimizu F; Sano Y; Kanda T; Marsh G; Trietsch SJ; Vulto P; Lanz HL; Obermeier B
    Fluids Barriers CNS; 2018 Aug; 15(1):23. PubMed ID: 30165870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties.
    Dos Santos Rodrigues B; Lakkadwala S; Kanekiyo T; Singh J
    Int J Nanomedicine; 2019; 14():6497-6517. PubMed ID: 31616141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle accumulation and transcytosis in brain endothelial cell layers.
    Ye D; Raghnaill MN; Bramini M; Mahon E; Åberg C; Salvati A; Dawson KA
    Nanoscale; 2013 Nov; 5(22):11153-65. PubMed ID: 24077327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency.
    Li J; Zhang W; Gao Y; Tong H; Chen Z; Shi J; Santos HA; Xia B
    J Mater Chem B; 2020 Jan; 8(3):546-557. PubMed ID: 31854435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line.
    Markoutsa E; Pampalakis G; Niarakis A; Romero IA; Weksler B; Couraud PO; Antimisiaris SG
    Eur J Pharm Biopharm; 2011 Feb; 77(2):265-74. PubMed ID: 21118722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies.
    Eigenmann DE; Xue G; Kim KS; Moses AV; Hamburger M; Oufir M
    Fluids Barriers CNS; 2013 Nov; 10(1):33. PubMed ID: 24262108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic Polymer Nanoparticles Functionalized with Different Ligands for Receptor-mediated Transcytosis across Blood-Brain Barrier.
    Lu Q; Cai X; Zhang X; Li S; Song Y; Du D; Dutta P; Lin Y
    ACS Appl Bio Mater; 2018; 1(5):1687-1694. PubMed ID: 31815251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
    Wang YI; Abaci HE; Shuler ML
    Biotechnol Bioeng; 2017 Jan; 114(1):184-194. PubMed ID: 27399645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standardized Preclinical
    Morrison JI; Petrovic A; Metzendorf NG; Rofo F; Yilmaz CU; Stenler S; Laudon H; Hultqvist G
    Mol Pharm; 2023 Mar; 20(3):1564-1576. PubMed ID: 36808999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro Blood-Brain Barrier Models for Nanomedicine: Particle-Specific Effects and Methodological Drawbacks.
    Sitia L; Catelani T; Guarnieri D; Pompa PP
    ACS Appl Bio Mater; 2019 Aug; 2(8):3279-3289. PubMed ID: 35030770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier.
    Liu D; Lin B; Shao W; Zhu Z; Ji T; Yang C
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2131-6. PubMed ID: 24417514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood-brain barrier and attenuates their targeting ability to brain tumor.
    Xiao W; Wang Y; Zhang H; Liu Y; Xie R; He X; Zhou Y; Liang L; Gao H
    Biomaterials; 2021 Jul; 274():120888. PubMed ID: 34029915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation.
    Ding H; Sagar V; Agudelo M; Pilakka-Kanthikeel S; Atluri VS; Raymond A; Samikkannu T; Nair MP
    Nanotechnology; 2014 Feb; 25(5):055101. PubMed ID: 24406534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier.
    Mészáros M; Porkoláb G; Kiss L; Pilbat AM; Kóta Z; Kupihár Z; Kéri A; Galbács G; Siklós L; Tóth A; Fülöp L; Csete M; Sipos Á; Hülper P; Sipos P; Páli T; Rákhely G; Szabó-Révész P; Deli MA; Veszelka S
    Eur J Pharm Sci; 2018 Oct; 123():228-240. PubMed ID: 30031862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.