These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37765293)
21. Influence of various concentrations of terpene-4-ol enhancer and carbopol-934 mucoadhesive upon the in vitro ocular transport and the in vivo intraocular pressure lowering effects of dorzolamide ophthalmic formulations using albino rabbits. Afouna MI; Khedr A; Abdel-Naim AB; Al-Marzoqi A J Pharm Sci; 2010 Jan; 99(1):119-27. PubMed ID: 19530071 [TBL] [Abstract][Full Text] [Related]
22. Optimizing ophthalmic delivery of a poorly water soluble drug from an aqueous in situ gelling system. Senjoti FG; Timmins P; Conway BR; Smith AM Eur J Pharm Biopharm; 2020 Sep; 154():1-7. PubMed ID: 32599271 [TBL] [Abstract][Full Text] [Related]
23. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Destruel PL; Zeng N; Seguin J; Douat S; Rosa F; Brignole-Baudouin F; Dufaÿ S; Dufaÿ-Wojcicki A; Maury M; Mignet N; Boudy V Int J Pharm; 2020 Jan; 574():118734. PubMed ID: 31705970 [TBL] [Abstract][Full Text] [Related]
24. Ex vivo models to evaluate the role of ocular melanin in trans-scleral drug delivery. Pescina S; Santi P; Ferrari G; Padula C; Cavallini P; Govoni P; Nicoli S Eur J Pharm Sci; 2012 Aug; 46(5):475-83. PubMed ID: 22484210 [TBL] [Abstract][Full Text] [Related]
25. Critical appraisal of alternative irritation models: three decades of testing ophthalmic pharmaceuticals. Abdelkader H; Pierscionek B; Carew M; Wu Z; Alany RG Br Med Bull; 2015 Mar; 113(1):59-71. PubMed ID: 25686845 [TBL] [Abstract][Full Text] [Related]
26. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. Fulgêncio Gde O; Viana FA; Ribeiro RR; Yoshida MI; Faraco AG; Cunha-Júnior Ada S J Ocul Pharmacol Ther; 2012 Aug; 28(4):350-8. PubMed ID: 22320419 [TBL] [Abstract][Full Text] [Related]
27. Ocular drug metabolism of the bioactivating antioxidant N-acetylcarnosine for vision in ophthalmic prodrug and codrug design and delivery. Babizhayev MA Drug Dev Ind Pharm; 2008 Oct; 34(10):1071-89. PubMed ID: 18777243 [TBL] [Abstract][Full Text] [Related]
29. Biopolymers in Mucoadhesive Eye Drops for Treatment of Dry Eye and Allergic Conditions: Application and Perspectives. Račić A; Krajišnik D Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839790 [TBL] [Abstract][Full Text] [Related]
30. Development of prednisolone-containing eye drop formulations by cyclodextrin complexation and antimicrobial, mucoadhesive biopolymer. Bíró T; Horvát G; Budai-Szűcs M; Csányi E; Urbán E; Facskó A; Szabó-Révész P; Csóka I; Aigner Z Drug Des Devel Ther; 2018; 12():2529-2537. PubMed ID: 30147300 [TBL] [Abstract][Full Text] [Related]
31. Brinzolamide-loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation tests. Mahboobian MM; Seyfoddin A; Aboofazeli R; Foroutan SM; Rupenthal ID Pharm Dev Technol; 2019 Jun; 24(5):600-606. PubMed ID: 30472913 [TBL] [Abstract][Full Text] [Related]
32. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Gause S; Hsu KH; Shafor C; Dixon P; Powell KC; Chauhan A Adv Colloid Interface Sci; 2016 Jul; 233():139-154. PubMed ID: 26318359 [TBL] [Abstract][Full Text] [Related]
33. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes. Loch C; Zakelj S; Kristl A; Nagel S; Guthoff R; Weitschies W; Seidlitz A Eur J Pharm Sci; 2012 Aug; 47(1):131-8. PubMed ID: 22659372 [TBL] [Abstract][Full Text] [Related]
34. Development of ARPE-19-Equipped Ocular Cell Model for In Vitro Investigation on Ophthalmic Formulations. Sapino S; Chindamo G; Peira E; Chirio D; Foglietta F; Serpe L; Vizio B; Gallarate M Pharmaceutics; 2023 Oct; 15(10):. PubMed ID: 37896232 [TBL] [Abstract][Full Text] [Related]
35. Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. Sandri G; Bonferoni MC; Gökçe EH; Ferrari F; Rossi S; Patrini M; Caramella C J Microencapsul; 2010; 27(8):735-46. PubMed ID: 21034366 [TBL] [Abstract][Full Text] [Related]
36. Multifunctional properties of organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides for ocular drug delivery. Xu T; Zhang J; Chi H; Cao F Acta Biomater; 2016 May; 36():152-63. PubMed ID: 26940970 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of protein drug stability with vitreous humor in a novel ex-vivo intraocular model. Patel S; Müller G; Stracke JO; Altenburger U; Mahler HC; Jere D Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):407-17. PubMed ID: 26032291 [TBL] [Abstract][Full Text] [Related]
38. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Qi H; Chen W; Huang C; Li L; Chen C; Li W; Wu C Int J Pharm; 2007 Jun; 337(1-2):178-87. PubMed ID: 17254725 [TBL] [Abstract][Full Text] [Related]
39. Delineating penetration enhancer-enriched liquid crystalline nanostructures as novel platforms for improved ophthalmic delivery. El-Gendy MA; Mansour M; El-Assal MIA; Ishak RAH; Mortada ND Int J Pharm; 2020 May; 582():119313. PubMed ID: 32283196 [TBL] [Abstract][Full Text] [Related]
40. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. Singh M; Bharadwaj S; Lee KE; Kang SG J Control Release; 2020 Dec; 328():895-916. PubMed ID: 33069743 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]