These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37765559)

  • 1. Numerical Simulation of Three-Dimensional Free Surface Flows Using the K-BKZ-PSM Integral Constitutive Equation.
    Bertoco J; Castelo A; Ferrás LL; Fernandes C
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Influence of Viscoelastic Modeling in Fluid Flow Simulations of Gum Acrylonitrile Butadiene Rubber.
    Stieger S; Mitsoulis E; Walluch M; Ebner C; Kerschbaumer RC; Haselmann M; Mostafaiyan M; Kämpfe M; Kühnert I; Wießner S; Friesenbichler W
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear small-angle light scattering studies of shear-induced concentration fluctuations and steady state viscoelastic properties.
    Endoh MK; Takenaka M; Inoue T; Watanabe H; Hashimoto T
    J Chem Phys; 2008 Apr; 128(16):164911. PubMed ID: 18447504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Isothermal Free-Surface Viscous Flow of Polymer Melts in Pipe Extrusion Using an Open-Source Interface Tracking Finite Volume Method.
    Fernandes C; Fakhari A; Tukovic Ž
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Effective Interface Tracking Method for Simulating the Extrudate Swell Phenomenon.
    Fakhari A; Tukovic Ž; Carneiro OS; Fernandes C
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33923447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Semi-Analytical Method for Channel and Pipe Flows for the Linear Phan-Thien-Tanner Fluid Model with a Solvent Contribution.
    de Araujo MT; Furlan L; Brandi A; Souza L
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On viscoelastic drop impact onto thin films: axisymmetric simulations and experimental analysis.
    Rezaie MR; Norouzi M; Kayhani MH; Taghavi SM; Kim M; Kim KC
    Sci Rep; 2023 Jul; 13(1):11041. PubMed ID: 37419954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking the Immersed Boundary Method for Viscoelastic Flows.
    Gruninger C; Barrett A; Fang F; Forest MG; Griffith BE
    J Comput Phys; 2024 Jun; 506():. PubMed ID: 38737497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hyper-Viscoelastic Constitutive Model for Polyurea under Uniaxial Compressive Loading.
    Bai Y; Liu C; Huang G; Li W; Feng S
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel.
    Wang X; Qiao Y; Qi H; Xu H
    Electrophoresis; 2021 Nov; 42(21-22):2347-2355. PubMed ID: 33811361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows.
    Finn J; Apte SV
    Chaos; 2013 Mar; 23(1):013145. PubMed ID: 23556982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional simulations of undulatory and amoeboid swimmers in viscoelastic fluids.
    Binagia JP; Guido CJ; Shaqfeh ESG
    Soft Matter; 2019 Jun; 15(24):4836-4855. PubMed ID: 31155624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the tracer velocity of a fluid continuum equal to its mass velocity?
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061201. PubMed ID: 15697343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.
    Park HM; Lee WM
    J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fully Implicit Log-Conformation Tensor Coupled Algorithm for the Solution of Incompressible Non-Isothermal Viscoelastic Flows.
    Fernandes C
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.