These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37765621)

  • 21. Manipulation of crystallization nucleation and thermal degradation of PLA films by multi-morphologies CNC-ZnO nanoparticles.
    Yan YF; Liang XB; Feng YL; Shi LF; Chen RP; Guo JZ; Guan Y
    Carbohydr Polym; 2023 Nov; 320():121251. PubMed ID: 37659828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eco-friendly zinc-metal-organic framework as a nucleating agent for poly (lactic acid).
    El-Taweel SH; Hassan SS; Ismail KM
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132691. PubMed ID: 38810857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films.
    Sullivan EM; Moon RJ; Kalaitzidou K
    Materials (Basel); 2015 Dec; 8(12):8106-8116. PubMed ID: 28793701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From Cellulose Nanospheres, Nanorods to Nanofibers: Various Aspect Ratio Induced Nucleation/Reinforcing Effects on Polylactic Acid for Robust-Barrier Food Packaging.
    Yu HY; Zhang H; Song ML; Zhou Y; Yao J; Ni QQ
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43920-43938. PubMed ID: 29171751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Isothermal and Nonisothermal Crystallization Kinetics and Morphology of Solvent-Precipitated Nylon 66.
    Tseng CH; Tsai PS
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties.
    Lizundia E; Fortunati E; Dominici F; Vilas JL; León LM; Armentano I; Torre L; Kenny JM
    Carbohydr Polym; 2016 May; 142():105-13. PubMed ID: 26917380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully Biodegradable Poly(hexamethylene succinate)/Cellulose Nanocrystals Composites with Enhanced Crystallization Rate and Mechanical Property.
    Pan S; Qiu Z
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined effect of cellulose nanocrystals and poly(butylene succinate) on poly(lactic acid) crystallization: The role of interfacial affinity.
    Zhang X; Shi J; Ye H; Dong Y; Zhou Q
    Carbohydr Polym; 2018 Jan; 179():79-85. PubMed ID: 29111073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallization Behavior and Mechanical Property of Biodegradable Poly(butylene succinate-
    Yao W; Pan S; Qiu Z
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites.
    Fortunati E; Peltzer M; Armentano I; Torre L; Jiménez A; Kenny JM
    Carbohydr Polym; 2012 Oct; 90(2):948-56. PubMed ID: 22840025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace sorbitol-modified nano-silica: Towards nano-nucleation for poly(L-lactic acid).
    Yang B; Wan X
    Int J Biol Macromol; 2024 Jun; 274(Pt 1):133236. PubMed ID: 38897511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive Blending of Recycled Poly(ethylene terephthalate)/Recycled Polypropylene: Kinetics Modeling of Non-Isothermal Crystallization.
    Barati A; Wang P; Liu S; Dashtimoghadam E
    ACS Omega; 2023 May; 8(17):15062-15074. PubMed ID: 37151490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends.
    Liu X; Fan XD; Tang MF; Nie Y
    Int J Mol Sci; 2008 Mar; 9(3):342-354. PubMed ID: 19325753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.
    Lizundia E; Vilas JL; León LM
    Carbohydr Polym; 2015 Jun; 123():256-65. PubMed ID: 25843857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid).
    Bussiere PO; Therias S; Gardette JL; Murariu M; Dubois P; Baba M
    Phys Chem Chem Phys; 2012 Sep; 14(35):12301-8. PubMed ID: 22858912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isothermal and Non-Isothermal Crystallization Kinetics of Poly(ethylene chlorotrifluoroethylene).
    Yang X; Yu B; Sun H; Wang N; Liu P; Feng J; Cui X
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Organic Modifier and Clay Content on Non-Isothermal Cold Crystallization and Melting Behavior of Polylactide/Organovermiculite Nanocomposites.
    Fernández MJ; Fernández MD
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32046008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How latex film formation and adhesion at the nanoscale correlate to performance of pressure sensitive adhesives with cellulose nanocrystals.
    Niinivaara E; Ouzas A; Fraschini C; Berry RM; Dubé MA; Cranston ED
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2206):20200330. PubMed ID: 34334024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone as probed by Rheo-Raman.
    Roy D; Kotula AP; Natarajan B; Gilman JW; Fox DM; Migler KB
    Polymer (Guildf); 2018; 153():. PubMed ID: 31274931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Silver Nanoparticles on the Microstructure, Non-Isothermal Crystallization Behavior and Antibacterial Activity of Polyoxymethylene.
    Zeng Y; Liu Y; Wang L; Huang H; Zhang X; Liu Y; Min M; Li Y
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32059358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.