These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37765693)

  • 1. Joining of Aluminum and CFRP via Laser Powder Bed Fusion: Influence of Experimental Set-Up and Laser Processing on Microstructure and Mechanical Properties.
    Nester S; Meinhard D; Schanz J; Rettenberger M; Taha I; Riegel H; Knoblauch V
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach.
    Sharma SK; Grewal HS; Saxena KK; Mohammed KA; Prakash C; Davim JP; Buddhi D; Raju R; Mohan DG; Tomków J
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting.
    Baitimerov R; Lykov P; Zherebtsov D; Radionova L; Shultc A; Prashanth KG
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29735932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting.
    Kühn U; Sander J; Gabrysiak KN; Giebeler L; Kosiba K; Pilz S; Neufeld K; Boehm AV; Hufenbach JK
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimetal Research in Powder Bed Fusion: A Review.
    Yao L; Ramesh A; Xiao Z; Chen Y; Zhuang Q
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Powder-Bed Fusion of Ceramic Particulate Reinforced Aluminum Alloys: A Review.
    Minasyan T; Hussainova I
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Powder Bed Fusion of Dissimilar Metal Materials: A Review.
    Guan J; Wang Q
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties.
    Bergmueller S; Kaserer L; Fuchs L; Braun J; Weinberger N; Letofsky-Papst I; Leichtfried G
    Heliyon; 2022 Aug; 8(8):e10171. PubMed ID: 36033262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Additive Manufacturing of TC4/AlSi12 Bimetallic Structure via Nb Interlayer.
    Jing Z; Liu X; Wang W; Xu N; Xu G; Xing F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Effects on Mechanical Strength of Additive Manufactured CFRP Composites at Stable and Cyclic Temperature.
    Muna II; Mieloszyk M; Rimasauskiene R; Maqsood N; Rimasauskas M
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and Mechanical Properties of Hypereutectic Al-High Si Alloys up to 70 wt.% Si-Content Produced from Pre-Alloyed and Blended Powder via Laser Powder Bed Fusion.
    Risse JH; Trempa M; Huber F; Höppel HW; Bartels D; Schmidt M; Reimann C; Friedrich J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
    Zhang S; Lane B; Whiting J; Chou K
    J Manuf Process; 2019; 47():. PubMed ID: 32855624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacturing Aluminum/Multiwalled Carbon Nanotube Composites via Laser Powder Bed Fusion.
    Lee ER; Shin SE; Takata N; Kobashi M; Kato M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Temperature Mechanical Properties of Stress-Relieved AlSi10Mg Produced via Laser Powder Bed Fusion Additive Manufacturing.
    Lehmhus D; Rahn T; Struss A; Gromzig P; Wischeropp T; Becker H
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process.
    Haase F; Siemers C; Rösler J
    Front Bioeng Biotechnol; 2023; 11():1260925. PubMed ID: 37744262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy.
    Azzougagh MN; Keller FX; Cabrol E; Cici M; Pourchez J
    J Occup Environ Hyg; 2021 Jun; 18(6):223-236. PubMed ID: 33989129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review.
    Aversa A; Marchese G; Saboori A; Bassini E; Manfredi D; Biamino S; Ugues D; Fino P; Lombardi M
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.