These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37765699)
21. Carbon Fiber Reinforced Epoxy Vitrimer: Robust Mechanical Performance and Facile Hydrothermal Decomposition in Pure Water. Liu T; Hao C; Shao L; Kuang W; Cosimbescu L; Simmons KL; Zhang J Macromol Rapid Commun; 2021 Feb; 42(3):e2000458. PubMed ID: 33230871 [TBL] [Abstract][Full Text] [Related]
22. Rosin-Based Epoxy Vitrimers with Dynamic Boronic Ester Bonds. Zeng Y; Li J; Liu S; Yang B Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641201 [TBL] [Abstract][Full Text] [Related]
23. Improving the Recyclability of an Epoxy Resin through the Addition of New Biobased Vitrimer. Veloso-Fernández A; Ruiz-Rubio L; Yugueros I; Moreno-Benítez MI; Laza JM; Vilas-Vilela JL Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765591 [TBL] [Abstract][Full Text] [Related]
24. Bio-Based Epoxy Vitrimers with Excellent Properties of Self-Healing, Recyclability, and Welding. Xia J; Li S; Gao R; Zhang Y; Wang L; Ye Y; Cao C; Xue H Polymers (Basel); 2024 Jul; 16(15):. PubMed ID: 39125140 [TBL] [Abstract][Full Text] [Related]
25. Investigation on Polyether Sulfone Toughening Epoxy Vitrimer: Curing and Dynamic Properties. Liu X; Fang M; Feng Y; Huang M; Liu C; Shen C Macromol Rapid Commun; 2024 Dec; 45(23):e2400540. PubMed ID: 39374340 [TBL] [Abstract][Full Text] [Related]
26. Hyperbranched Dynamic Crosslinking Networks Enable Degradable, Reconfigurable, and Multifunctional Epoxy Vitrimer. Zhang Y; Yan H; Yu R; Yuan J; Yang K; Liu R; He Y; Feng W; Tian W Adv Sci (Weinh); 2024 Jan; 11(2):e2306350. PubMed ID: 37933980 [TBL] [Abstract][Full Text] [Related]
27. Rates of transesterification in epoxy-thiol vitrimers. Gablier A; Saed MO; Terentjev EM Soft Matter; 2020 Jun; 16(22):5195-5202. PubMed ID: 32469024 [TBL] [Abstract][Full Text] [Related]
28. Catalytic Control of the Vitrimer Glass Transition. Capelot M; Unterlass MM; Tournilhac F; Leibler L ACS Macro Lett; 2012 Jul; 1(7):789-792. PubMed ID: 35607118 [TBL] [Abstract][Full Text] [Related]
29. Multiple welding of long fiber epoxy vitrimer composites. Chabert E; Vial J; Cauchois JP; Mihaluta M; Tournilhac F Soft Matter; 2016 May; 12(21):4838-45. PubMed ID: 27140663 [TBL] [Abstract][Full Text] [Related]
30. Synthesis of novel vanillin-amine hardeners fully derived from renewable bio feedstocks and their curing with epoxy resins to produce recyclable reprocessable vitrimers. Rashid MA; Hasan MN; Kafi MA Heliyon; 2023 May; 9(5):e16062. PubMed ID: 37215916 [TBL] [Abstract][Full Text] [Related]
31. Creep and Recovery Behavior of Vitrimers with Fast Bond Exchange Rate. Perego A; Khabaz F Macromol Rapid Commun; 2023 Jan; 44(1):e2200313. PubMed ID: 35856395 [TBL] [Abstract][Full Text] [Related]
32. Direct Silyl Ether Metathesis for Vitrimers with Exceptional Thermal Stability. Tretbar CA; Neal JA; Guan Z J Am Chem Soc; 2019 Oct; 141(42):16595-16599. PubMed ID: 31603321 [TBL] [Abstract][Full Text] [Related]
33. Recyclable High-Performance Epoxy-Anhydride Resins with DMP-30 as the Catalyst of Transesterification Reactions. Zhao W; An L; Wang S Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33477708 [TBL] [Abstract][Full Text] [Related]
35. Catalyst-Free α-Acetyl Cinnamate/Acetoacetate Exchange to Enable High Creep-Resistant Vitrimers. Feng H; Wang S; Lim JYC; Li B; Rusli W; Liu F; Hadjichristidis N; Li Z; Zhu J Angew Chem Int Ed Engl; 2024 May; 63(20):e202400955. PubMed ID: 38489506 [TBL] [Abstract][Full Text] [Related]
36. Rapid Stress Relaxation and Moderate Temperature of Malleability Enabled by the Synergy of Disulfide Metathesis and Carboxylate Transesterification in Epoxy Vitrimers. Chen M; Zhou L; Wu Y; Zhao X; Zhang Y ACS Macro Lett; 2019 Mar; 8(3):255-260. PubMed ID: 35650825 [TBL] [Abstract][Full Text] [Related]
37. One-Pot Preparation of Double-Network Epoxy Vitrimers with High Performance, Recyclability, and Two-Stage Stress Relaxation. Du Y; Wang D ACS Appl Mater Interfaces; 2024 Aug; 16(31):41551-41561. PubMed ID: 39042785 [TBL] [Abstract][Full Text] [Related]
38. In Situ Network Formation in PBT Vitrimers via Processing-Induced Deprotection Chemistry. Zhou Y; Goossens JGP; van den Bergen S; Sijbesma RP; Heuts JPA Macromol Rapid Commun; 2018 Oct; 39(19):e1800356. PubMed ID: 30062837 [TBL] [Abstract][Full Text] [Related]
39. Versatile Phosphate Diester-Based Flame Retardant Vitrimers via Catalyst-Free Mixed Transesterification. Feng X; Li G ACS Appl Mater Interfaces; 2020 Dec; 12(51):57486-57496. PubMed ID: 33302619 [TBL] [Abstract][Full Text] [Related]
40. Strong yet Tough Catalyst-Free Transesterification Vitrimer with Excellent Fire-Retardancy, Durability, and Closed-Loop Recyclability. Ye G; Huo S; Wang C; Zhang Q; Wang H; Song P; Liu Z Small; 2024 Nov; 20(45):e2404634. PubMed ID: 39082404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]