These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37765748)

  • 1. Trends in Single-Molecule Total Internal Reflection Fluorescence Imaging and Their Biological Applications with Lab-on-a-Chip Technology.
    Colson L; Kwon Y; Nam S; Bhandari A; Maya NM; Lu Y; Cho Y
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
    Stoppin-Mellet V; Bagdadi N; Saoudi Y; Arnal I
    Methods Mol Biol; 2020; 2101():77-91. PubMed ID: 31879899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy.
    Goudsmits JMH; van Oijen AM; Slotboom DJ
    Methods Enzymol; 2017; 594():101-121. PubMed ID: 28779837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Based Optical Microscopes on Chip.
    Paiè P; Martínez Vázquez R; Osellame R; Bragheri F; Bassi A
    Cytometry A; 2018 Oct; 93(10):987-996. PubMed ID: 30211977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Total Internal Reflection Fluorescence Microscopy.
    Kudalkar EM; Davis TN; Asbury CL
    Cold Spring Harb Protoc; 2016 May; 2016(5):pdb.top077800. PubMed ID: 27140922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison and progress review of various super-resolution fluorescence imaging techniques].
    Chen J; Liu W; Xu Z
    Se Pu; 2021 Oct; 39(10):1055-1064. PubMed ID: 34505427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the Assembly of Multicomponent Molecular Machines by Single-Molecule Total Internal Reflection Fluorescence Microscopy.
    Boehm EM; Subramanyam S; Ghoneim M; Washington MT; Spies M
    Methods Enzymol; 2016; 581():105-145. PubMed ID: 27793278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 'pocket guide' to total internal reflection fluorescence.
    Martin-Fernandez ML; Tynan CJ; Webb SE
    J Microsc; 2013 Oct; 252(1):16-22. PubMed ID: 23889125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.
    Chin LK; Lee CH; Chen BC
    Lab Chip; 2016 May; 16(11):2014-24. PubMed ID: 27121367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Total Internal Reflection Fluorescence and Direct Stochastic Optical Reconstruction Microscopy Using a Photonic Chip.
    Coucheron DA; Helle ØI; Øie CI; Tinguely JC; Ahluwalia BS
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31789320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid single-molecule imaging in cyclic olefin copolymer channels.
    Skinner JP; Tetin SY
    Microsc Res Tech; 2015 Apr; 78(4):309-16. PubMed ID: 25704038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Background Estimators in Single-Molecule FRET Microscopy.
    Preus S; Hildebrandt LL; Birkedal V
    Biophys J; 2016 Sep; 111(6):1278-1286. PubMed ID: 27653486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.
    Yamamura H; Suzuki Y; Imaizumi Y
    J Pharmacol Sci; 2015 May; 128(1):1-7. PubMed ID: 26002253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the Glass Treatment for Single-Molecule Analysis of ncRNA Function.
    Shen S; Naganuma M; Tomari Y; Tadakuma H
    Methods Mol Biol; 2022; 2509():209-231. PubMed ID: 35796966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.
    Pires NM; Dong T; Hanke U; Hoivik N
    Sensors (Basel); 2014 Aug; 14(8):15458-79. PubMed ID: 25196161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
    Mumtaz Z; Rashid Z; Ali A; Arif A; Ameen F; AlTami MS; Yousaf MZ
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective fluorescence and fluorescence-free detection of single biomolecules on nanobiochips.
    Lee S; Kang SH
    J Biomed Nanotechnol; 2014 Oct; 10(10):2620-40. PubMed ID: 25992412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Setting up multicolour TIRF microscopy down to the single molecule level.
    Schirripa Spagnolo C; Luin S
    Biomol Concepts; 2023 Jan; 14(1):. PubMed ID: 37428621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.