These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform. Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013 [TBL] [Abstract][Full Text] [Related]
3. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks. Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005 [TBL] [Abstract][Full Text] [Related]
4. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence. Abderrahmane N; Lemaire E; Miramond B Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning With Spiking Neurons: Opportunities and Challenges. Pfeiffer M; Pfeil T Front Neurosci; 2018; 12():774. PubMed ID: 30410432 [TBL] [Abstract][Full Text] [Related]
6. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware. Rostami A; Vogginger B; Yan Y; Mayr CG Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534 [TBL] [Abstract][Full Text] [Related]
7. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics. Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R Front Neurosci; 2021; 15():667011. PubMed ID: 34267622 [TBL] [Abstract][Full Text] [Related]
8. Parallelization of Neural Processing on Neuromorphic Hardware. Peres L; Rhodes O Front Neurosci; 2022; 16():867027. PubMed ID: 35620669 [TBL] [Abstract][Full Text] [Related]
10. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB Front Neurosci; 2018; 12():291. PubMed ID: 29875620 [TBL] [Abstract][Full Text] [Related]
11. Rethinking the performance comparison between SNNS and ANNS. Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857 [TBL] [Abstract][Full Text] [Related]
12. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model. Knight JC; Nowotny T Front Neurosci; 2018; 12():941. PubMed ID: 30618570 [TBL] [Abstract][Full Text] [Related]
13. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture. Knight JC; Furber SB Front Neurosci; 2016; 10():420. PubMed ID: 27683540 [TBL] [Abstract][Full Text] [Related]
14. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms. Stromatias E; Neil D; Pfeiffer M; Galluppi F; Furber SB; Liu SC Front Neurosci; 2015; 9():222. PubMed ID: 26217169 [TBL] [Abstract][Full Text] [Related]
15. Spiking Neural Networks and Their Applications: A Review. Yamazaki K; Vo-Ho VK; Bulsara D; Le N Brain Sci; 2022 Jun; 12(7):. PubMed ID: 35884670 [TBL] [Abstract][Full Text] [Related]
16. Automotive Radar Processing With Spiking Neural Networks: Concepts and Challenges. Vogginger B; Kreutz F; López-Randulfe J; Liu C; Dietrich R; Gonzalez HA; Scholz D; Reeb N; Auge D; Hille J; Arsalan M; Mirus F; Grassmann C; Knoll A; Mayr C Front Neurosci; 2022; 16():851774. PubMed ID: 35431782 [TBL] [Abstract][Full Text] [Related]
17. Beyond LIF Neurons on Neuromorphic Hardware. Ward M; Rhodes O Front Neurosci; 2022; 16():881598. PubMed ID: 35864984 [TBL] [Abstract][Full Text] [Related]
18. Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition. Wu J; Yılmaz E; Zhang M; Li H; Tan KC Front Neurosci; 2020; 14():199. PubMed ID: 32256308 [TBL] [Abstract][Full Text] [Related]
19. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI. Xiao C; Chen J; Wang L Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344 [TBL] [Abstract][Full Text] [Related]
20. Demonstrating the Viability of Mapping Deep Learning Based EEG Decoders to Spiking Networks on Low-powered Neuromorphic Chips. Pals M; Belizon RJP; Berberich N; Ehrlich SK; Nassour J; Cheng G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6102-6105. PubMed ID: 34892509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]