These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37765878)

  • 1. π-FBG Fiber Optic Acoustic Emission Sensor for the Crack Detection of Wind Turbine Blades.
    Yan Q; Che X; Li S; Wang G; Liu X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review.
    Ding S; Yang C; Zhang S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.
    Tian S; Yang Z; Chen X; Xie Y
    Sensors (Basel); 2015 Aug; 15(8):19992-20005. PubMed ID: 26287200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location Determination of Impact on the Wind Turbine Blade Surface Based on the FBG and the Time Difference.
    Wang B; Sun W; Wang H; Wan Y; Xu T
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.
    Tang J; Soua S; Mares C; Gan TH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Optimization of Sensitivity-Enhanced Structure for Fiber Bragg Grating Acoustic Emission Sensor Based on Additive Manufacturing.
    Yu Y; Liu B; Xia F
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Situ Cure Monitoring of Wind Turbine Blades by Using Fiber Bragg Grating Sensors and Fresnel Reflection Measurement.
    Sampath U; Kim H; Kim DG; Kim YC; Song M
    Sensors (Basel); 2015 Jul; 15(8):18229-38. PubMed ID: 26225970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-based identification of damage in wind turbine blades using novelty detection.
    Oliveira MA; Simas Filho EF; Albuquerque MCS; Santos YTB; da Silva IC; Farias CTT
    Ultrasonics; 2020 Dec; 108():106166. PubMed ID: 32526526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters.
    Violakis G; Le-Quang T; Shevchik SA; Wasmer K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Fiber-Optic Ring Acoustic Emission Sensor.
    Wei P; Han X; Xia D; Liu T; Lang H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided wave and damage detection in composite laminates using different fiber optic sensors.
    Li F; Murayama H; Kageyama K; Shirai T
    Sensors (Basel); 2009; 9(5):4005-21. PubMed ID: 22412347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile Damage Study of Wind Turbine Tower Material Q345 Based on an Acoustic Emission Method.
    Tang X; Liao L; Huang B; Li C
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic-based whistle detection of drain hole for wind turbine blade.
    Chen B; Zhang M; Lin Z; Xu H
    ISA Trans; 2022 Dec; 131():736-747. PubMed ID: 35618502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large dynamic-range fiber Bragg grating sensor system for acoustic emission detection.
    Gong Z; Che J; Wei H; Krishnaswamy S
    Appl Opt; 2021 Jul; 60(19):5547-5552. PubMed ID: 34263843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack Monitoring of Operational Wind Turbine Foundations.
    Perry M; McAlorum J; Fusiek G; Niewczas P; McKeeman I; Rubert T
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain.
    Tsuda H; Kumakura K; Ogihara S
    Sensors (Basel); 2010; 10(12):11248-58. PubMed ID: 22163523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview.
    Mishnaevsky L
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.