BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37766002)

  • 1. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection.
    Song S; Fernandes NJ; Nordin AD
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach.
    Hossain MSB; Guo Z; Choi H
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):2829-2840. PubMed ID: 37030855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait.
    Baniasad M; Martin R; Crevoisier X; Pichonnaz C; Becce F; Aminian K
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection.
    Jabri S; Carender W; Wiens J; Sienko KH
    J Neuroeng Rehabil; 2022 Dec; 19(1):132. PubMed ID: 36456966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts.
    Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic analysis of gait in an underwater treadmill using land-based Vicon T 40s motion capture cameras arranged externally.
    Raghu SL; Conners RT; Kang CK; Landrum DB; Whitehead PN
    J Biomech; 2021 Jul; 124():110553. PubMed ID: 34161842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of shoe-type inertial measurement units for Parkinson's disease patients during treadmill walking.
    Lee M; Youm C; Jeon J; Cheon SM; Park H
    J Neuroeng Rehabil; 2018 May; 15(1):38. PubMed ID: 29764466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Vertical Ground Reaction Force during Walking Using a Single Inertial Sensor.
    Jiang X; Napier C; Hannigan B; Eng JJ; Menon C
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Accuracy and Precision of Gait Spatio-Temporal Parameters Extracted from an Instrumented Sock during Treadmill and Overground Walking in Healthy Subjects and Patients with a Foot Impairment Secondary to Psoriatic Arthritis.
    Walha R; Lebel K; Gaudreault N; Dagenais P; Cereatti A; Della Croce U; Boissy P
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust walking detection algorithm using a single foot-worn inertial sensor: validation in real-life settings.
    Prigent G; Aminian K; Cereatti A; Salis F; Bonci T; Scott K; Mazzà C; Alcock L; Del Din S; Gazit E; Hansen C; Paraschiv-Ionescu A;
    Med Biol Eng Comput; 2023 Sep; 61(9):2341-2352. PubMed ID: 37069465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Running Gait Event Detection Algorithms in a Semi-Uncontrolled Environment.
    Donahue SR; Hahn ME
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning.
    Lim H; Kim B; Park S
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Gait Event Detection Algorithm Using a Thigh-Worn Inertial Measurement Unit and Joint Angle Information.
    Strick JA; Farris RJ; Sawicki JT
    J Biomech Eng; 2024 Apr; 146(4):. PubMed ID: 38183222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D; Halgamuge S; Ackland DC
    J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum.
    Lee M; Park S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units.
    Zago M; Tarabini M; Delfino Spiga M; Ferrario C; Bertozzi F; Sforza C; Galli M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33513999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.