These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37766015)

  • 1. Random Telegraph Noise Degradation Caused by Hot Carrier Injection in a 0.8 μm-Pitch 8.3Mpixel Stacked CMOS Image Sensor.
    Chao CY; Wu TM; Yeh SF; Lee CL; Tu H; Huang JC; Chang CH
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical Analysis of the Random Telegraph Noise in a 1.1 μm Pixel, 8.3 MP CMOS Image Sensor Using On-Chip Time Constant Extraction Method.
    Chao CY; Tu H; Wu TM; Chou KY; Yeh SF; Yin C; Lee CL
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random Telegraph Noises from the Source Follower, the Photodiode Dark Current, and the Gate-Induced Sense Node Leakage in CMOS Image Sensors.
    Chao CY; Yeh SF; Wu MH; Chou KY; Tu H; Lee CL; Yin C; Paillet P; Goiffon V
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random telegraph noise from resonant tunnelling at low temperatures.
    Li Z; Sotto M; Liu F; Husain MK; Yoshimoto H; Sasago Y; Hisamoto D; Tomita I; Tsuchiya Y; Saito S
    Sci Rep; 2018 Jan; 8(1):250. PubMed ID: 29321552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures.
    Ma Y; Bi J; Wang H; Fan L; Zhao B; Shen L; Liu M
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 45 nm Stacked CMOS Image Sensor Process Technology for Submicron Pixel.
    Takahashi S; Huang YM; Sze JJ; Wu TT; Guo FS; Hsu WC; Tseng TH; Liao K; Kuo CC; Chen TH; Chiang WC; Chuang CH; Chou KY; Chung CH; Chou KY; Tseng CH; Wang CJ; Yaung DN
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29206162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent 1/f Noise in Ensembles of Random Telegraph Noise Oscillators.
    Costanzi BN; Dahlberg ED
    Phys Rev Lett; 2017 Sep; 119(9):097201. PubMed ID: 28949589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor.
    Ishida H; Kagawa K; Komuro T; Zhang B; Seo MW; Takasawa T; Yasutomi K; Kawahito S
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random Telegraph Noise in 3D NAND Flash Memories.
    Spinelli AS; Malavena G; Lacaita AL; Monzio Compagnoni C
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34208725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RTN and Annealing Related to Stress and Temperature in FIND RRAM Array.
    Chen CY; Lin CJ; King YC
    Nanoscale Res Lett; 2019 Jan; 14(1):12. PubMed ID: 30623262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of random telegraph noise by high-pressure deuterium annealing for p-type omega-gate nanowire FET.
    Yang G; Kim D; Yang JW; Barraud S; Brevard L; Ghibaudo G; Lee JW
    Nanotechnology; 2020 Oct; 31(41):415201. PubMed ID: 32559755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenomenological analysis of random telegraph noise in amorphous TiOx-based bipolar resistive switching random access memory devices.
    Lee JK; Lee JW; Bae JH; Park J; Chung SW; Roh JS; Hong SJ; Lee JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5392-6. PubMed ID: 22966577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of electron conduction in contact resistive random access memory devices as random telegraph noise.
    Tseng YH; Shen WC; Lin CJ
    J Appl Phys; 2012 Apr; 111(7):73701-737015. PubMed ID: 22536005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Coupling Mechanism between Flicker Noise and Hot Carrier Degradations in FinFETs.
    Liu M; Sun Z; Lu H; Shen C; Zhang L; Wang R; Huang R
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Automated Extraction of the Distribution of Single Defects for nMOS Transistors.
    Stampfer B; Schanovsky F; Grasser T; Waltl M
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of Distance Between Interface Trap and Oxide Trap from Random Telegraph Noise in Gate-Induced Drain Leakage.
    Seo Y; Yoo S; Shin J; Kim H; Kim H; Jeon S; Shin H
    J Nanosci Nanotechnol; 2016 May; 16(5):5247-51. PubMed ID: 27483908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous random telegraph noise in nanoscale transistors as direct evidence of two metastable states of oxide traps.
    Guo S; Wang R; Mao D; Wang Y; Huang R
    Sci Rep; 2017 Jul; 7(1):6239. PubMed ID: 28740136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local field effect on charge-capture/emission dynamics.
    Cheung KP; Veksler D; Campbell JP
    IEEE Trans Electron Devices; 2017 Dec; 64(12):5099-5016. PubMed ID: 29375150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing individual quantum dots: noise in self-assembled systems.
    Vicaro KO; Gutiérrez HR; Seabra AC; Schulz PA; Cotta MA
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6390-5. PubMed ID: 19908539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency noise in nanowires.
    Fleetwood DM
    Nanoscale; 2023 Jul; 15(29):12175-12192. PubMed ID: 37432750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.