These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 37766068)

  • 1. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings.
    Kang Y; Chen G; Wang H; Pan W; Wei X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fault anomaly detection method of aero-engine rolling bearing based on distillation learning.
    Kang Y; Chen G; Wang H; Sheng J; Wei X
    ISA Trans; 2024 Feb; 145():387-398. PubMed ID: 38061925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing.
    Liu R; Wang X; Kumar A; Sun B; Zhou Y
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.
    Shi H; Chen J; Si J; Zheng C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel deep learning framework for rolling bearing fault diagnosis enhancement using VAE-augmented CNN model.
    Wang Y; Li D; Li L; Sun R; Wang S
    Heliyon; 2024 Aug; 10(15):e35407. PubMed ID: 39166054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fault Diagnosis of Rolling Bearings Is Conducted by Employing a Dual-Branch Convolutional Capsule Neural Network.
    Lu W; Liu J; Lin F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network.
    Li H; Huang J; Ji S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings.
    Xie S; Ren G; Zhu J
    Sci Prog; 2020; 103(3):36850420951394. PubMed ID: 32880535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures.
    Xiong S; Zhou H; He S; Zhang L; Xia Q; Xuan J; Shi T
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet.
    Shao H; Jiang H; Wang F; Wang Y
    ISA Trans; 2017 Jul; 69():187-201. PubMed ID: 28502383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Feature Extraction Network Based on Acoustic Signal Feature Learning for Bearing Fault Diagnosis.
    Luo Y; Lu W; Kang S; Tian X; Kang X; Sun F
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning.
    Xu G; Liu M; Jiang Z; Söffker D; Shen W
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent Compound Fault Diagnosis of Roller Bearings Based on Deep Graph Convolutional Network.
    Chen C; Yuan Y; Zhao F
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism.
    Wu H; Li J; Zhang Q; Tao J; Meng Z
    ISA Trans; 2022 Nov; 130():477-489. PubMed ID: 35491253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network.
    Yan J; Kan J; Luo H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum.
    Zhai L; Wang X; Si Z; Wang Z
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bearing Fault Diagnosis of Hot-Rolling Mill Utilizing Intelligent Optimized Self-Adaptive Deep Belief Network with Limited Samples.
    Peng R; Zhang X; Shi P
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults: Solving the small sample problem.
    Dong Y; Li Y; Zheng H; Wang R; Xu M
    ISA Trans; 2022 Feb; 121():327-348. PubMed ID: 33962795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.