These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37766317)

  • 41. Spillover of an endemic avian Influenza H6N2 chicken lineage to ostriches and reassortment with clade 2.3.4.4b H5N1 high pathogenicity viruses in chickens.
    Abolnik C
    Vet Res Commun; 2024 Apr; 48(2):1233-1237. PubMed ID: 37966679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-infections, genetic, and antigenic relatedness of avian influenza H5N8 and H5N1 viruses in domestic and wild birds in Egypt.
    Shehata AA; Sedeik ME; Elbestawy AR; Zain El-Abideen MA; Ibrahim HH; Kilany WH; Ali A
    Poult Sci; 2019 Jun; 98(6):2371-2379. PubMed ID: 30668795
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First Outbreak of an H5N8 Highly Pathogenic Avian Influenza Virus on a Chicken Farm in Japan in 2020.
    Sakuma S; Uchida Y; Kajita M; Tanikawa T; Mine J; Tsunekuni R; Saito T
    Viruses; 2021 Mar; 13(3):. PubMed ID: 33809529
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Foret-Lucas C; Figueroa T; Coggon A; Houffschmitt A; Dupré G; Fusade-Boyer M; Guérin JL; Delverdier M; Bessière P; Volmer R
    Microbiol Spectr; 2023 Feb; 11(1):e0422922. PubMed ID: 36625654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016-2017 winter season.
    Kwon HI; Kim EH; Kim YI; Park SJ; Si YJ; Lee IW; Nguyen HD; Yu KM; Yu MA; Jung JH; Choi WS; Kwon JJ; Ahn SJ; Baek YH; Van Lai D; Lee OJ; Kim SW; Song MS; Yoon SW; Kim CJ; Webby RJ; Mo IP; Choi YK
    Emerg Microbes Infect; 2018 Mar; 7(1):29. PubMed ID: 29535296
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses from wild birds possessing atypical hemagglutinin polybasic cleavage sites.
    Usui T; Soda K; Tomioka Y; Ito H; Yabuta T; Takakuwa H; Otsuki K; Ito T; Yamaguchi T
    Virus Genes; 2017 Feb; 53(1):44-51. PubMed ID: 27738904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High Rates of Detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 Viruses in Wild Birds in the Pacific Northwest During the Winter of 2014-15.
    Ip HS; Dusek RJ; Bodenstein B; Torchetti MK; DeBruyn P; Mansfield KG; DeLiberto T; Sleeman JM
    Avian Dis; 2016 May; 60(1 Suppl):354-8. PubMed ID: 27309079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insertion of Basic Amino Acids in the Hemagglutinin Cleavage Site of H4N2 Avian Influenza Virus (AIV)-Reduced Virus Fitness in Chickens is Restored by Reassortment with Highly Pathogenic H5N1 AIV.
    Gischke M; Ulrich R; I Fatola O; Scheibner D; Salaheldin AH; Crossley B; Böttcher-Friebertshäuser E; Veits J; Mettenleiter TC; Abdelwhab EM
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32231159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Infectivity and pathobiology of H7N1 and H5N8 high pathogenicity avian influenza viruses for pigeons (
    Sánchez-González R; Ramis A; Nofrarías M; Wali N; Valle R; Pérez M; Perlas A; Majó N
    Avian Pathol; 2021 Feb; 50(1):98-106. PubMed ID: 33034513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A multi-species, multi-pathogen avian viral disease outbreak event: Investigating potential for virus transmission at the wild bird - poultry interface.
    Reid SM; Byrne AMP; Lean FZX; Ross CS; Pascu A; Hepple R; Dominguez M; Frost S; Coward VJ; Núñez A; James J; Stephan L; Aegerter JN; Brown IH; Banyard AC
    Emerg Microbes Infect; 2024 Dec; 13(1):2348521. PubMed ID: 38686548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pathobiology of Clade 2.3.4.4 H5Nx High-Pathogenicity Avian Influenza Virus Infections in Minor Gallinaceous Poultry Supports Early Backyard Flock Introductions in the Western United States in 2014-2015.
    Bertran K; Lee DH; Pantin-Jackwood MJ; Spackman E; Balzli C; Suarez DL; Swayne DE
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28794040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic Determinants for Virulence and Transmission of the Panzootic Avian Influenza Virus H5N8 Clade 2.3.4.4 in Pekin Ducks.
    Scheibner D; Breithaupt A; Luttermann C; Blaurock C; Mettenleiter TC; Abdelwhab EM
    J Virol; 2022 Jul; 96(13):e0014922. PubMed ID: 35670594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. H5Nx Viruses Emerged during the Suppression of H5N1 Virus Populations in Poultry.
    Li YT; Su YCF; Smith GJD
    Microbiol Spectr; 2021 Oct; 9(2):e0130921. PubMed ID: 34585974
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Examination of the protective efficacy of two avian influenza H5 vaccines against clade 2.3.4.4b H5N8 highly pathogenic avian influenza virus in commercial broilers.
    El-Shall NA; Awad AM; Sedeik ME
    Res Vet Sci; 2021 Nov; 140():125-133. PubMed ID: 34425414
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diverse infectivity, transmissibility, and pathobiology of clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses in chickens.
    Kwon JH; Bertran K; Lee DH; Criado MF; Killmaster L; Pantin-Jackwood MJ; Swayne DE
    Emerg Microbes Infect; 2023 Dec; 12(1):2218945. PubMed ID: 37309051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transmission dynamics between infected waterfowl and terrestrial poultry: Differences between the transmission and tropism of H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4a) among ducks, chickens and turkeys.
    Puranik A; Slomka MJ; Warren CJ; Thomas SS; Mahmood S; Byrne AMP; Ramsay AM; Skinner P; Watson S; Everett HE; Núñez A; Brown IH; Brookes SM
    Virology; 2020 Feb; 541():113-123. PubMed ID: 32056709
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple independent introductions of highly pathogenic avian influenza H5 viruses during the 2020-2021 epizootic in France.
    Briand FX; Niqueux E; Schmitz A; Martenot C; Cherbonnel M; Massin P; Busson R; Guillemoto C; Pierre I; Louboutin K; Souchaud F; Allée C; Quenault H; Lucas P; de Wiele AV; Blanchard Y; Eterradossi N; Scoizec A; Bouquin-Leneveu SL; Rautureau S; Lambert Y; Grasland B
    Transbound Emerg Dis; 2022 Nov; 69(6):4028-4033. PubMed ID: 36161777
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A review of H5Nx avian influenza viruses.
    Nuñez IA; Ross TM
    Ther Adv Vaccines Immunother; 2019; 7():2515135518821625. PubMed ID: 30834359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence.
    Wessels U; Abdelwhab EM; Veits J; Hoffmann D; Mamerow S; Stech O; Hellert J; Beer M; Mettenleiter TC; Stech J
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pathogenicity of highly pathogenic avian influenza H5N8 subtype for herring gulls (Larus argentatus): impact of homo- and heterosubtypic immunity on the outcome of infection.
    Tarasiuk K; Kycko A; Knitter M; Świętoń E; Wyrostek K; Domańska-Blicharz K; Bocian Ł; Meissner W; Śmietanka K
    Vet Res; 2022 Dec; 53(1):108. PubMed ID: 36517883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.