BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37766382)

  • 1. A qualitative study exploring healthcare professionals' perceptions of lower limb 3D printed sockets.
    Li L; Miguel M; Phillips C; Verweel L; Wasilewski MB; MacKay C
    Disabil Rehabil; 2023 Sep; ():1-7. PubMed ID: 37766382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A qualitative study on stakeholder perceptions of digital prosthetic socket fabrication for transtibial amputations.
    Mayo AL; Gould S; Cimino SR; Glasford S; Harvey E; Ratto M; Hitzig SL
    Prosthet Orthot Int; 2022 Dec; 46(6):607-613. PubMed ID: 36515905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. User perspectives of digital manufacturing for lower-limb prosthetic sockets.
    Phillips C; Li L; Miguel M; Eshraghi A; Heim W; Dilkas S; Devlin M; Wasilewski M; Verweel L; MacKay C
    Prosthet Orthot Int; 2024 Jan; 48(1):100-107. PubMed ID: 37639567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on three-dimensional printed prosthetics leg sockets coated with different reinforcement materials: analysis on mechanical strength and microstructural.
    Ramlee MH; Ammarullah MI; Mohd Sukri NS; Faidzul Hassan NS; Baharuddin MH; Abdul Kadir MR
    Sci Rep; 2024 Mar; 14(1):6842. PubMed ID: 38514731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed transtibial prosthetic sockets: A systematic review.
    Kim S; Yalla S; Shetty S; Rosenblatt NJ
    PLoS One; 2022; 17(10):e0275161. PubMed ID: 36215238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing in prosthetics: Method for managing rapid limb volume change.
    Nickel E; Barrons K; Hand B; Cataldo A; Hansen A
    Prosthet Orthot Int; 2020 Oct; 44(5):355-358. PubMed ID: 32580681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Investigation of the Structural Strength of Transtibial Sockets Fabricated Using Conventional Methods and Rapid Prototyping Techniques.
    Pousett B; Lizcano A; Raschke SU
    Can Prosthet Orthot J; 2019; 2(1):31008. PubMed ID: 37614804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printing and Upper-Limb Prosthetic Sockets: Promises and Pitfalls.
    Olsen J; Day S; Dupan S; Nazarpour K; Dyson M
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():527-535. PubMed ID: 33587701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Digital Technology to Overcome Barriers in the Prosthetic and Orthotic Industry: Evaluation of its Applicability and Use During the COVID-19 Pandemic.
    Binedell T; Subburaj K; Wong Y; Blessing LTM
    JMIR Rehabil Assist Technol; 2020 Nov; 7(2):e23827. PubMed ID: 33006946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength testing of low-cost 3D-printed transtibial prosthetic socket.
    van der Stelt M; Verhamme L; Slump CH; Brouwers L; Maal TJ
    Proc Inst Mech Eng H; 2022 Mar; 236(3):367-375. PubMed ID: 34852701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring The Future of Prosthetics and Orthotics: Harnessing The Potential of 3D Printing.
    Gutierrez AR
    Can Prosthet Orthot J; 2023; 6(2):42140. PubMed ID: 38873127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using mechanical testing to assess texturing of prosthetic sockets to improve suspension in the transverse plane and reduce rotation.
    Quinlan J; Subramanian V; Yohay J; Poziembo B; Fatone S
    PLoS One; 2020; 15(6):e0233148. PubMed ID: 32525868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on Properties of Automatically Designed 3D-Printed Customized Prosthetic Sockets.
    Górski F; Wichniarek R; Kuczko W; Żukowska M
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjustable-Volume Prosthetic Sockets: Market Overview and Value Propositions.
    Klenow TD; Schulz J
    Can Prosthet Orthot J; 2021; 4(2):35208. PubMed ID: 37615005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A preliminary investigation into the development of 3-D printing of prosthetic sockets.
    Herbert N; Simpson D; Spence WD; Ion W
    J Rehabil Res Dev; 2005; 42(2):141-6. PubMed ID: 15944878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using mechanical testing to assess the effect of lower-limb prosthetic socket texturing on longitudinal suspension.
    Quinlan J; Yohay J; Subramanian V; Poziembo B; Fatone S
    PLoS One; 2020; 15(8):e0237841. PubMed ID: 32813733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Modular Adjustable Transhumeral Prosthetic Socket for Evaluating Myoelectric Control.
    Hallworth BW; Austin JA; Williams HE; Rehani M; Shehata AW; Hebert JS
    IEEE J Transl Eng Health Med; 2020; 8():0700210. PubMed ID: 32670675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the barriers and facilitators for the use of digital health technologies for the management of COPD: a qualitative study of clinician perceptions.
    Slevin P; Kessie T; Cullen J; Butler MW; Donnelly SC; Caulfield B
    QJM; 2020 Mar; 113(3):163-172. PubMed ID: 31545374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the influence of cyclic loading on a laser sintered transtibial prosthetic socket using Digital Image Correlation (DIC).
    Saey T; Muraru L; Raeve E; Cuppens K; Balcaen R; Creylman V
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5382-5385. PubMed ID: 31947072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of body-powered 3D printed partial finger prostheses: a case study.
    Young KJ; Pierce JE; Zuniga JM
    3D Print Med; 2019 May; 5(1):7. PubMed ID: 31049828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.