These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37766513)

  • 21. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical Stabilization of Nanoscale Conductors by Plasmon Oscillations.
    Kuperman M; Nagar L; Peskin U
    Nano Lett; 2020 Jul; 20(7):5531-5537. PubMed ID: 32538634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanically controlled molecular orbital alignment in single molecule junctions.
    Bruot C; Hihath J; Tao N
    Nat Nanotechnol; 2011 Dec; 7(1):35-40. PubMed ID: 22138861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diamondoid-based molecular junctions: a computational study.
    Adhikari B; Sivaraman G; Fyta M
    Nanotechnology; 2016 Dec; 27(48):485207. PubMed ID: 27819796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conductance saturation in a series of highly transmitting molecular junctions.
    Yelin T; Korytár R; Sukenik N; Vardimon R; Kumar B; Nuckolls C; Evers F; Tal O
    Nat Mater; 2016 Apr; 15(4):444-9. PubMed ID: 26828315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current-induced forces in mesoscopic systems: A scattering-matrix approach.
    Bode N; Kusminskiy SV; Egger R; von Oppen F
    Beilstein J Nanotechnol; 2012; 3():144-62. PubMed ID: 22428105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charge transport and rectification in molecular junctions formed with carbon-based electrodes.
    Kim T; Liu ZF; Lee C; Neaton JB; Venkataraman L
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):10928-32. PubMed ID: 25024198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions.
    Zou Q; Chen X; Zhou Y; Jin X; Zhang Z; Qiu J; Wang R; Hong W; Su J; Qu DH; Tian H
    J Am Chem Soc; 2022 Jun; 144(22):10042-10052. PubMed ID: 35611861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic Quantum Dynamics.
    Liu J; He X; Wu B
    Acc Chem Res; 2021 Dec; 54(23):4215-4228. PubMed ID: 34756027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum Transport through a Single Conjugated Rigid Molecule, a Mechanical Break Junction Study.
    Frisenda R; Stefani D; van der Zant HSJ
    Acc Chem Res; 2018 Jun; 51(6):1359-1367. PubMed ID: 29862817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives.
    Aradhya SV; Meisner JS; Krikorian M; Ahn S; Parameswaran R; Steigerwald ML; Nuckolls C; Venkataraman L
    Nano Lett; 2012 Mar; 12(3):1643-7. PubMed ID: 22352939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fitting coupled potential energy surfaces for large systems: method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data.
    Zhu X; Yarkony DR
    J Chem Phys; 2014 Jan; 140(2):024112. PubMed ID: 24437870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissecting Time-Evolved Conductance Behavior of Single Molecule Junctions by Nonparametric Machine Learning.
    Liu B; Murayama S; Komoto Y; Tsutsui M; Taniguchi M
    J Phys Chem Lett; 2020 Aug; 11(16):6567-6572. PubMed ID: 32668163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.
    Lykkebo J; Romano G; Gagliardi A; Pecchia A; Solomon GC
    J Chem Phys; 2016 Mar; 144(11):114310. PubMed ID: 27004879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implications and applications of current-induced dynamics in molecular junctions.
    Jorn R; Seideman T
    Acc Chem Res; 2010 Sep; 43(9):1186-94. PubMed ID: 20465221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction.
    Frisenda R; van der Zant HS
    Phys Rev Lett; 2016 Sep; 117(12):126804. PubMed ID: 27689291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonadiabatic Molecular Dynamics at Metal Surfaces.
    Dou W; Subotnik JE
    J Phys Chem A; 2020 Feb; 124(5):757-771. PubMed ID: 31916769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radical-Enhanced Charge Transport in Single-Molecule Phenothiazine Electrical Junctions.
    Liu J; Zhao X; Al-Galiby Q; Huang X; Zheng J; Li R; Huang C; Yang Y; Shi J; Manrique DZ; Lambert CJ; Bryce MR; Hong W
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13061-13065. PubMed ID: 28771925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical quantum master equation approach to vibronic reaction dynamics at metal surfaces.
    Erpenbeck A; Thoss M
    J Chem Phys; 2019 Nov; 151(19):191101. PubMed ID: 31757135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.