BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37766593)

  • 1. High-throughput adjustable deformability cytometry utilizing elasto-inertial focusing and virtual fluidic channel.
    Zhou Z; Ni C; Zhu Z; Chen Y; Ni Z; Xiang N
    Lab Chip; 2023 Oct; 23(20):4528-4539. PubMed ID: 37766593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial Multi-Force Deformability Cytometry for High-Throughput, High-Accuracy, and High-Applicability Tumor Cell Mechanotyping.
    Chen Y; Ni C; Jiang L; Ni Z; Xiang N
    Small; 2024 Feb; 20(7):e2303962. PubMed ID: 37789502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiparameter Mechanical Phenotyping for Accurate Cell Identification Using High-Throughput Microfluidic Deformability Cytometry.
    Zhou Z; Guo K; Zhu S; Ni C; Ni Z; Xiang N
    Anal Chem; 2024 Jun; 96(25):10313-10321. PubMed ID: 38857194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping.
    Liang M; Yang D; Zhou Y; Li P; Zhong J; Ai Y
    Anal Chem; 2021 Mar; 93(10):4567-4575. PubMed ID: 33661609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle focusing by 3D inertial microfluidics.
    Paiè P; Bragheri F; Di Carlo D; Osellame R
    Microsyst Nanoeng; 2017; 3():17027. PubMed ID: 31057868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascaded elasto-inertial separation of malignant tumor cells from untreated malignant pleural and peritoneal effusions.
    Ni C; Wu D; Chen Y; Wang S; Xiang N
    Lab Chip; 2024 Feb; 24(4):697-706. PubMed ID: 38273802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sheathless inertial particle focusing methods within microfluidic devices: a review.
    Peng T; Qiang J; Yuan S
    Front Bioeng Biotechnol; 2023; 11():1331968. PubMed ID: 38260735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Simulation of Real-Time Deformability Cytometry To Extract Cell Mechanical Properties.
    Mokbel M; Mokbel D; Mietke A; Träber N; Girardo S; Otto O; Guck J; Aland S
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2962-2973. PubMed ID: 33418716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics.
    Zhou Y; Ma Z; Ai Y
    Lab Chip; 2020 Feb; 20(3):568-581. PubMed ID: 31894813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elasto-inertial particle focusing in sinusoidal microfluidic channels.
    Chen D; Huang Q; Ni Z; Xiang N
    Electrophoresis; 2024 May; ():. PubMed ID: 38813845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.
    Mietke A; Otto O; Girardo S; Rosendahl P; Taubenberger A; Golfier S; Ulbricht E; Aland S; Guck J; Fischer-Friedrich E
    Biophys J; 2015 Nov; 109(10):2023-36. PubMed ID: 26588562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and numerical study of elasto-inertial focusing in straight channels.
    Raoufi MA; Mashhadian A; Niazmand H; Asadnia M; Razmjou A; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034103. PubMed ID: 31123535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels.
    Naderi MM; Barilla L; Zhou J; Papautsky I; Peng Z
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.