These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
6. Deep Transfer Learning Models for Medical Diabetic Retinopathy Detection. Khalifa NEM; Loey M; Taha MHN; Mohamed HNET Acta Inform Med; 2019 Dec; 27(5):327-332. PubMed ID: 32210500 [TBL] [Abstract][Full Text] [Related]
7. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
8. A reliable diabetic retinopathy grading via transfer learning and ensemble learning with quadratic weighted kappa metric. Chilukoti SV; Shan L; Tida VS; Maida AS; Hei X BMC Med Inform Decis Mak; 2024 Feb; 24(1):37. PubMed ID: 38321416 [TBL] [Abstract][Full Text] [Related]
9. A difficulty-aware and task-augmentation method based on meta-learning model for few-shot diabetic retinopathy classification. Liu X; Dong X; Li T; Zou X; Cheng C; Jiang Z; Gao Z; Duan S; Chen M; Liu T; Huang P; Li D; Lu H Quant Imaging Med Surg; 2024 Jan; 14(1):861-876. PubMed ID: 38223039 [TBL] [Abstract][Full Text] [Related]
10. Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images. Kobat SG; Baygin N; Yusufoglu E; Baygin M; Barua PD; Dogan S; Yaman O; Celiker U; Yildirim H; Tan RS; Tuncer T; Islam N; Acharya UR Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010325 [TBL] [Abstract][Full Text] [Related]
11. Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy. Mohanty C; Mahapatra S; Acharya B; Kokkoras F; Gerogiannis VC; Karamitsos I; Kanavos A Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420891 [TBL] [Abstract][Full Text] [Related]
12. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC). Das D; Biswas SK; Bandyopadhyay S Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440 [TBL] [Abstract][Full Text] [Related]
13. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
14. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification. Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723 [No Abstract] [Full Text] [Related]
15. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning. Alyoubi WL; Abulkhair MF; Shalash WM Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541 [TBL] [Abstract][Full Text] [Related]
16. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review. Farahat Z; Zrira N; Souissi N; Bennani Y; Bencherif S; Benamar S; Belmekki M; Ngote MN; Megdiche K Surv Ophthalmol; 2024; 69(5):707-721. PubMed ID: 38885761 [TBL] [Abstract][Full Text] [Related]
17. An automated unsupervised deep learning-based approach for diabetic retinopathy detection. Naz H; Nijhawan R; Ahuja NJ Med Biol Eng Comput; 2022 Dec; 60(12):3635-3654. PubMed ID: 36274090 [TBL] [Abstract][Full Text] [Related]
18. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
19. DRISTI: a hybrid deep neural network for diabetic retinopathy diagnosis. Kumar G; Chatterjee S; Chattopadhyay C Signal Image Video Process; 2021; 15(8):1679-1686. PubMed ID: 33897905 [TBL] [Abstract][Full Text] [Related]
20. Explainable Diabetic Retinopathy using EfficientNET Chetoui M; Akhloufi MA Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1966-1969. PubMed ID: 33018388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]