These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37766903)

  • 21. A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique.
    Wahab Sait AR
    Diagnostics (Basel); 2023 Oct; 13(19):. PubMed ID: 37835861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Model Domain Adaptation for Diabetic Retinopathy Classification.
    Zhang G; Sun B; Zhang Z; Pan J; Yang W; Liu Y
    Front Physiol; 2022; 13():918929. PubMed ID: 35845987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model.
    Shoaib MR; Emara HM; Zhao J; El-Shafai W; Soliman NF; Mubarak AS; Omer OA; El-Samie FEA; Esmaiel H
    Comput Biol Med; 2024 Feb; 169():107834. PubMed ID: 38159396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network.
    Fatima ; Imran M; Ullah A; Arif M; Noor R
    Comput Biol Med; 2022 Jun; 145():105424. PubMed ID: 35349799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images.
    Jacoba CMP; Doan D; Salongcay RP; Aquino LAC; Silva JPY; Salva CMG; Zhang D; Alog GP; Zhang K; Locaylocay KLRB; Saunar AV; Ashraf M; Sun JK; Peto T; Aiello LP; Silva PS
    Ophthalmol Retina; 2023 Aug; 7(8):703-712. PubMed ID: 36924893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet.
    Vijayan M; S V
    Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection.
    Gupta S; Thakur S; Gupta A
    Multimed Tools Appl; 2022; 81(10):14475-14501. PubMed ID: 35233182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid neural network approach for classifying diabetic retinopathy subtypes.
    Xu H; Shao X; Fang D; Huang F
    Front Med (Lausanne); 2023; 10():1293019. PubMed ID: 38239623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep feed forward neural network-based screening system for diabetic retinopathy severity classification using the lion optimization algorithm.
    Vasireddi HK; K SD; G N V RR
    Graefes Arch Clin Exp Ophthalmol; 2022 Apr; 260(4):1245-1263. PubMed ID: 34505925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel deep learning model for diabetic retinopathy detection in retinal fundus images using pre-trained CNN and HWBLSTM.
    Hemanth SV; Alagarsamy S; Rajkumar TD
    J Biomol Struct Dyn; 2024 Feb; ():1-19. PubMed ID: 38373067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models.
    Pavithra S; Jaladi D; Tamilarasi K
    Photodiagnosis Photodyn Ther; 2024 Aug; 48():104259. PubMed ID: 38944405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic Detection and Classification of Diabetic Retinopathy Using the Improved Pooling Function in the Convolution Neural Network.
    Bhimavarapu U; Chintalapudi N; Battineni G
    Diagnostics (Basel); 2023 Aug; 13(15):. PubMed ID: 37568969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison review of image classification techniques for early diagnosis of diabetic retinopathy.
    Wangweera C; Zanini P
    Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39173657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diabetic Retinopathy Prediction Based on Wavelet Decomposition and Modified Capsule Network.
    Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Bennis A; Yahyaouy A; Chraibi F; Abdellaoui M; Andaloussi IB; Tairi H
    J Digit Imaging; 2023 Aug; 36(4):1739-1751. PubMed ID: 36973632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection.
    Albadr MAA; Ayob M; Tiun S; Al-Dhief FT; Hasan MK
    Front Public Health; 2022; 10():925901. PubMed ID: 35979449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DR-NASNet: Automated System to Detect and Classify Diabetic Retinopathy Severity Using Improved Pretrained NASNet Model.
    Sajid MZ; Hamid MF; Youssef A; Yasmin J; Perumal G; Qureshi I; Naqi SM; Abbas Q
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deploying efficient net batch normalizations (BNs) for grading diabetic retinopathy severity levels from fundus images.
    Batool S; Gilani SO; Waris A; Iqbal KF; Khan NB; Khan MI; Eldin SM; Awwad FA
    Sci Rep; 2023 Sep; 13(1):14462. PubMed ID: 37660096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD.
    Yazdan SA; Ahmad R; Iqbal N; Rizwan A; Khan AN; Kim DH
    Tomography; 2022 Jul; 8(4):1905-1927. PubMed ID: 35894026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.