These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37766903)
41. Classification of Diabetic Retinopathy Disease Levels by Extracting Spectral Features Using Wavelet CNN. Sundar S; Subramanian S; Mahmud M Diagnostics (Basel); 2024 May; 14(11):. PubMed ID: 38893619 [TBL] [Abstract][Full Text] [Related]
42. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
43. Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study. Zhang G; Lin JW; Wang J; Ji J; Cen LP; Chen W; Xie P; Zheng Y; Xiong Y; Wu H; Li D; Ng TK; Pang CP; Zhang M BMJ Open; 2022 Jul; 12(7):e060155. PubMed ID: 35902186 [TBL] [Abstract][Full Text] [Related]
44. A deep learning framework for the early detection of multi-retinal diseases. Ejaz S; Baig R; Ashraf Z; Alnfiai MM; Alnahari MM; Alotaibi RM PLoS One; 2024; 19(7):e0307317. PubMed ID: 39052616 [TBL] [Abstract][Full Text] [Related]
45. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Chetoui M; Akhloufi MA J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519 [No Abstract] [Full Text] [Related]
46. Transfer learning-driven ensemble model for detection of diabetic retinopathy disease. Chaurasia BK; Raj H; Rathour SS; Singh PB Med Biol Eng Comput; 2023 Aug; 61(8):2033-2049. PubMed ID: 37296285 [TBL] [Abstract][Full Text] [Related]
47. A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Das D; Biswas SK; Bandyopadhyay S Multimed Tools Appl; 2022; 81(18):25613-25655. PubMed ID: 35342328 [TBL] [Abstract][Full Text] [Related]
48. Review on diabetic retinopathy with deep learning methods. Shekar S; Satpute N; Gupta A J Med Imaging (Bellingham); 2021 Nov; 8(6):060901. PubMed ID: 34859116 [No Abstract] [Full Text] [Related]
49. Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data. Lo J; Yu TT; Ma D; Zang P; Owen JP; Zhang Q; Wang RK; Beg MF; Lee AY; Jia Y; Sarunic MV Ophthalmol Sci; 2021 Dec; 1(4):100069. PubMed ID: 36246944 [TBL] [Abstract][Full Text] [Related]
50. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME). Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096 [TBL] [Abstract][Full Text] [Related]
51. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845 [TBL] [Abstract][Full Text] [Related]
52. Optimized deep CNN for detection and classification of diabetic retinopathy and diabetic macular edema. Thanikachalam V; Kabilan K; Erramchetty SK BMC Med Imaging; 2024 Aug; 24(1):227. PubMed ID: 39198741 [TBL] [Abstract][Full Text] [Related]
53. DeepHistoNet: A robust deep-learning model for the classification of hepatocellular, lung, and colon carcinoma. Kadirappa R; S D; R P; Ko SB Microsc Res Tech; 2024 Feb; 87(2):229-256. PubMed ID: 37750465 [TBL] [Abstract][Full Text] [Related]
54. Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Galdran A; Chelbi J; Kobi R; Dolz J; Lombaert H; Ben Ayed I; Chakor H Transl Vis Sci Technol; 2020 Jun; 9(2):34. PubMed ID: 32832207 [TBL] [Abstract][Full Text] [Related]
55. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN. Durai DBJ; Jaya T Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737 [TBL] [Abstract][Full Text] [Related]
56. A Prospective Study on Diabetic Retinopathy Detection Based on Modify Convolutional Neural Network Using Fundus Images at Sindh Institute of Ophthalmology & Visual Sciences. Bajwa A; Nosheen N; Talpur KI; Akram S Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766498 [TBL] [Abstract][Full Text] [Related]
57. Contrastive self-supervised learning for diabetic retinopathy early detection. Ouyang J; Mao D; Guo Z; Liu S; Xu D; Wang W Med Biol Eng Comput; 2023 Sep; 61(9):2441-2452. PubMed ID: 37119374 [TBL] [Abstract][Full Text] [Related]
58. Diabetic retinopathy detection using Bilayered Neural Network classification model with resubstitution validation. Omer HK MethodsX; 2024 Jun; 12():102705. PubMed ID: 38633420 [TBL] [Abstract][Full Text] [Related]
59. Harnessing deep learning for detection of diabetic retinopathy in geriatric group using optical coherence tomography angiography-OCTA: A promising approach. Bidwai P; Gite S; Pradhan B; Gupta H; Alamri A MethodsX; 2024 Dec; 13():102910. PubMed ID: 39280760 [TBL] [Abstract][Full Text] [Related]
60. Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems. Hacisoftaoglu RE; Karakaya M; Sallam AB Pattern Recognit Lett; 2020 Jul; 135():409-417. PubMed ID: 32704196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]