These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene. Bhattacharya G; Fishlock SJ; Hussain S; Choudhury S; Xiang A; Kandola B; Pritam A; Soin N; Roy SS; McLaughlin JA ACS Appl Mater Interfaces; 2022 Jul; 14(27):31109-31120. PubMed ID: 35767835 [TBL] [Abstract][Full Text] [Related]
6. A performance improvement of enzyme-based electrochemical lactate sensor fabricated by electroplating novel PdCu mediator on a laser induced graphene electrode. Han JH; Hyun Park S; Kim S; Jungho Pak J Bioelectrochemistry; 2022 Dec; 148():108259. PubMed ID: 36179392 [TBL] [Abstract][Full Text] [Related]
7. In-situ fabrication of titanium suboxide-laser induced graphene composites: Removal of organic pollutants and MS2 Bacteriophage. Kumar A; Barbhuiya NH; Nair AM; Jashrapuria K; Dixit N; Singh SP Chemosphere; 2023 Sep; 335():138988. PubMed ID: 37247678 [TBL] [Abstract][Full Text] [Related]
8. Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration. Zahed MA; Barman SC; Das PS; Sharifuzzaman M; Yoon HS; Yoon SH; Park JY Biosens Bioelectron; 2020 Jul; 160():112220. PubMed ID: 32339151 [TBL] [Abstract][Full Text] [Related]
9. A flexible and disposable electrochemical sensor for the evaluation of arsenic levels: A new and efficient method for the batch fabrication of chemically modified electrodes. Zhao G; Wang X; Liu G; Cao Y; Liu N; Thi Dieu Thuy N; Zhang L; Yu M Anal Chim Acta; 2022 Feb; 1194():339413. PubMed ID: 35063159 [TBL] [Abstract][Full Text] [Related]
10. A green route for lignin-derived graphene electrodes: A disposable platform for electrochemical biosensors. Meng L; Chirtes S; Liu X; Eriksson M; Mak WC Biosens Bioelectron; 2022 Dec; 218():114742. PubMed ID: 36201997 [TBL] [Abstract][Full Text] [Related]
11. Elucidating charge transfer process and enhancing electrochemical performance of laser-induced graphene via surface engineering with sustainable hydrogel membranes: An electrochemist's perspective. Khodadadi Yazdi M; Manohar A; Olejnik A; Smułka A; Kramek A; Pierpaoli M; Saeb MR; Bogdanowicz R; Ryl J Talanta; 2025 Jan; 281():126836. PubMed ID: 39260256 [TBL] [Abstract][Full Text] [Related]