These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37767223)

  • 1. Engineering the thin film characteristics for optimal performance of superconducting kinetic inductance amplifiers using a rigorous modelling technique.
    Tan BK; Boussaha F; Chaumont C; Longden J; Navarro Montilla J
    Open Res Eur; 2022; 2():88. PubMed ID: 37767223
    [No Abstract]   [Full Text] [Related]  

  • 2. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing.
    Vissers MR; Erickson RP; Ku HS; Vale L; Wu X; Hilton G; Pappas DP
    Appl Phys Lett; 2016; 108():. PubMed ID: 27114615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a Kinetic Inductance Traveling-Wave Parametric Amplifier at 4 Kelvin: Toward an Alternative to Semiconductor Amplifiers.
    Malnou M; Aumentado J; Vissers MR; Wheeler JD; Hubmayr J; Ullom JN; Gao J
    Phys Rev Appl; 2022 Apr; 17(4):. PubMed ID: 37965129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Strategies for Superconducting Microstrip Transmission Line Structures.
    U-Yen K; Rostem K; Wollack EJ
    IEEE Trans Appl Supercond; 2018 Sep; 28(6):. PubMed ID: 30220829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A near-quantum-limited Josephson traveling-wave parametric amplifier.
    Macklin C; O'Brien K; Hover D; Schwartz ME; Bolkhovsky V; Zhang X; Oliver WD; Siddiqi I
    Science; 2015 Oct; 350(6258):307-10. PubMed ID: 26338795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant phase matching of Josephson junction traveling wave parametric amplifiers.
    O'Brien K; Macklin C; Siddiqi I; Zhang X
    Phys Rev Lett; 2014 Oct; 113(15):157001. PubMed ID: 25375734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Characterisation of Titanium Nitride Subarrays of Kinetic Inductance Detectors for Passive Terahertz Imaging.
    Morozov D; Doyle SM; Banerjee A; Brien TLR; Hemakumara D; Thayne IG; Wood K; Hadfield RH
    J Low Temp Phys; 2018; 193(3):196-202. PubMed ID: 30839694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-Scale MgB
    Kim C; Bell C; Evans JM; Greenfield J; Batson E; Berggren KK; Lewis NS; Cunnane DP
    ACS Nano; 2024 Oct; 18(40):27782-27792. PubMed ID: 39316430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh Kinetic Inductance Superconducting Materials from Spinodal Decomposition.
    Gao R; Ku HS; Deng H; Yu W; Xia T; Wu F; Song Z; Wang M; Miao X; Zhang C; Lin Y; Shi Y; Zhao HH; Deng C
    Adv Mater; 2022 Aug; 34(32):e2201268. PubMed ID: 35678176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-preserving amplification near the quantum limit with a Josephson ring modulator.
    Bergeal N; Schackert F; Metcalfe M; Vijay R; Manucharyan VE; Frunzio L; Prober DE; Schoelkopf RJ; Girvin SM; Devoret MH
    Nature; 2010 May; 465(7294):64-8. PubMed ID: 20445625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid rf SQUID qubit based on high kinetic inductance.
    Peltonen JT; Coumou PCJJ; Peng ZH; Klapwijk TM; Tsai JS; Astafiev OV
    Sci Rep; 2018 Jul; 8(1):10033. PubMed ID: 29968751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor Optical Amplifiers with Wide Gain Bandwidth and Enhanced Polarization Insensitivity Based on Tensile-Strained Quantum Wells.
    Tang H; Zhang M; Yang C; Liang L; Qin L; Lei Y; Jia P; Chen Y; Wang Y; Song Y; Qiu C; Cao Y; Li D; Wang L
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ amplification of spin echoes within a kinetic inductance parametric amplifier.
    Vine W; Savytskyi M; Vaartjes A; Kringhøj A; Parker D; Slack-Smith J; Schenkel T; Mølmer K; McCallum JC; Johnson BC; Morello A; Pla JJ
    Sci Adv; 2023 Mar; 9(10):eadg1593. PubMed ID: 36897947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Josephson junction microwave amplifier in self-organized noise compression mode.
    Lähteenmäki P; Vesterinen V; Hassel J; Seppä H; Hakonen P
    Sci Rep; 2012; 2():276. PubMed ID: 22355788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum-noise-limited microwave amplification using a graphene Josephson junction.
    Sarkar J; Salunkhe KV; Mandal S; Ghatak S; Marchawala AH; Das I; Watanabe K; Taniguchi T; Vijay R; Deshmukh MM
    Nat Nanotechnol; 2022 Nov; 17(11):1147-1152. PubMed ID: 36309589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum.
    Grünhaupt L; Maleeva N; Skacel ST; Calvo M; Levy-Bertrand F; Ustinov AV; Rotzinger H; Monfardini A; Catelani G; Pop IM
    Phys Rev Lett; 2018 Sep; 121(11):117001. PubMed ID: 30265102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing dielectric properties of ultra-thin films using superconducting coplanar microwave resonators.
    Ebensperger NG; Ferdinand B; Koelle D; Kleiner R; Dressel M; Scheffler M
    Rev Sci Instrum; 2019 Nov; 90(11):114701. PubMed ID: 31779383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators.
    Ryu Y; Jeong J; Suh J; Kim J; Choi H; Cha J
    Nano Lett; 2024 Jan; 24(4):1223-1230. PubMed ID: 38232153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-noise cryogenic microwave amplifier characterization with a calibrated noise source.
    Malnou M; Larson TFQ; Teufel JD; Lecocq F; Aumentado J
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38451145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.