These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 37767298)

  • 1. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants.
    Ali S; Tyagi A; Mir RA; Rather IA; Anwar Y; Mahmoudi H
    Front Plant Sci; 2023; 14():1266182. PubMed ID: 37767298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the effect of waterlogging stress on plant microbiome and disease development: current knowledge and future perspectives.
    Tyagi A; Ali S; Mir RA; Sharma S; Arpita K; Almalki MA; Mir ZA
    Front Plant Sci; 2024; 15():1407789. PubMed ID: 38903424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives.
    Kumawat KC; Razdan N; Saharan K
    Microbiol Res; 2022 Jan; 254():126901. PubMed ID: 34700186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat Microbiome: Structure, Dynamics, and Role in Improving Performance Under Stress Environments.
    Chen J; Sharifi R; Khan MSS; Islam F; Bhat JA; Kui L; Majeed A
    Front Microbiol; 2021; 12():821546. PubMed ID: 35095825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling.
    Bukhat S; Imran A; Javaid S; Shahid M; Majeed A; Naqqash T
    Microbiol Res; 2020 Sep; 238():126486. PubMed ID: 32464574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Abiotic Stress on Soil Microbiome.
    Abdul Rahman NSN; Abdul Hamid NW; Nadarajah K
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of plants strategies to resist biotic and abiotic environmental stressors.
    Nawaz M; Sun J; Shabbir S; Khattak WA; Ren G; Nie X; Bo Y; Javed Q; Du D; Sonne C
    Sci Total Environ; 2023 Nov; 900():165832. PubMed ID: 37524179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants.
    Aloo BN; Dessureault-Rompré J; Tripathi V; Nyongesa BO; Were BA
    Front Microbiol; 2023; 14():1171104. PubMed ID: 37455718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
    Qin Y; Druzhinina IS; Pan X; Yuan Z
    Biotechnol Adv; 2016 Nov; 34(7):1245-1259. PubMed ID: 27587331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-Microbiota Interactions in Abiotic Stress Environments.
    Omae N; Tsuda K
    Mol Plant Microbe Interact; 2022 Jul; 35(7):511-526. PubMed ID: 35322689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics-guided utilization of beneficial microbes for climate-resilient crops.
    Olanrewaju OS; Glick BR; Babalola OO
    Curr Opin Chem Biol; 2024 Apr; 79():102427. PubMed ID: 38290195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering.
    Qiu Z; Egidi E; Liu H; Kaur S; Singh BK
    Biotechnol Adv; 2019 Nov; 37(6):107371. PubMed ID: 30890361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the roles of microbes in facilitating plant adaptation to climate change.
    Barnes EM; Tringe SG
    Biochem J; 2022 Feb; 479(3):327-335. PubMed ID: 35119455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-pathogenic microbiome associated to aquatic plants and anthropogenic impacts on this interaction.
    Cruz FVDS; Barbosa da Costa N; Juneau P
    Sci Total Environ; 2024 Jul; 948():174663. PubMed ID: 38992379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a Resilient, Functional Microbiome: Drought Tolerance-Alleviating Microbes for Sustainable Agriculture.
    Lakshmanan V; Ray P; Craven KD
    Methods Mol Biol; 2017; 1631():69-84. PubMed ID: 28735391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.