BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37767690)

  • 1. Evidence for multi-scale power amplification in skeletal muscle.
    Petersen JC; Roberts TJ
    J Exp Biol; 2023 Nov; 226(21):. PubMed ID: 37767690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power amplification in an isolated muscle-tendon unit is load dependent.
    Sawicki GS; Sheppard P; Roberts TJ
    J Exp Biol; 2015 Nov; 218(Pt 22):3700-9. PubMed ID: 26449973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo muscle force and muscle power during near-maximal frog jumps.
    Moo EK; Peterson DR; Leonard TR; Kaya M; Herzog W
    PLoS One; 2017; 12(3):e0173415. PubMed ID: 28282405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading.
    Richards CT; Sawicki GS
    J Theor Biol; 2012 Nov; 313():68-78. PubMed ID: 22898554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hurry Up and Get Out of the Way! Exploring the Limits of Muscle-Based Latch Systems for Power Amplification.
    Abbott EM; Nezwek T; Schmitt D; Sawicki GS
    Integr Comp Biol; 2019 Dec; 59(6):1546-1558. PubMed ID: 31418784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The integrated function of muscles and tendons during locomotion.
    Roberts TJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):1087-99. PubMed ID: 12485693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.
    Roberts TJ; Azizi E
    J Appl Physiol (1985); 2010 Aug; 109(2):396-404. PubMed ID: 20507964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement.
    Roberts TJ
    J Exp Biol; 2016 Jan; 219(Pt 2):266-75. PubMed ID: 26792339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.
    Sawicki GS; Robertson BD; Azizi E; Roberts TJ
    J Exp Biol; 2015 Oct; 218(Pt 19):3150-9. PubMed ID: 26232413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.
    Prilutsky BI; Herzog W; Leonard TR; Allinger TL
    J Biomech; 1996 Apr; 29(4):417-34. PubMed ID: 8964771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical behavior of muscle-tendon complex during dynamic human movements.
    Fukashiro S; Hay DC; Nagano A
    J Appl Biomech; 2006 May; 22(2):131-47. PubMed ID: 16871004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping.
    Astley HC; Roberts TJ
    Biol Lett; 2012 Jun; 8(3):386-9. PubMed ID: 22090204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of tendon compliance on muscle power output and efficiency during cyclic contractions.
    Lichtwark GA; Barclay CJ
    J Exp Biol; 2010 Mar; 213(5):707-14. PubMed ID: 20154185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuned muscle and spring properties increase elastic energy storage.
    Mendoza E; Azizi E
    J Exp Biol; 2021 Dec; 224(24):. PubMed ID: 34821932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
    Holt NC; Mayfield DL
    J Biomech; 2023 May; 153():111585. PubMed ID: 37126884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.
    Roberts TJ; Azizi E
    J Exp Biol; 2011 Feb; 214(Pt 3):353-61. PubMed ID: 21228194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additional in-series compliance reduces muscle force summation and alters the time course of force relaxation during fixed-end contractions.
    Mayfield DL; Launikonis BS; Cresswell AG; Lichtwark GA
    J Exp Biol; 2016 Nov; 219(Pt 22):3587-3596. PubMed ID: 27609762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement.
    Olberding JP; Deban SM; Rosario MV; Azizi E
    Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle-spring dynamics in time-limited, elastic movements.
    Rosario MV; Sutton GP; Patek SN; Sawicki GS
    Proc Biol Sci; 2016 Sep; 283(1838):. PubMed ID: 27629031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.