BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37767807)

  • 1. Bioassay-guided isolation, identification and activity evaluation of antifungal compounds from
    Safa R; Walid Y; Affes TG; Hammami M; Sellami IH
    Int J Environ Health Res; 2024 Jun; 34(6):2593-2604. PubMed ID: 37767807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent).
    Aqueveque P; Céspedes CL; Becerra J; Aranda M; Sterner O
    Food Chem Toxicol; 2017 Nov; 109(Pt 2):1048-1054. PubMed ID: 28528973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal Activity of Eugenol Derivatives against
    Olea AF; Bravo A; Martínez R; Thomas M; Sedan C; Espinoza L; Zambrano E; Carvajal D; Silva-Moreno E; Carrasco H
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934962
    [No Abstract]   [Full Text] [Related]  

  • 4. Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.).
    Ahmadu T; Ahmad K; Ismail SI; Rashed O; Asib N; Omar D
    Braz J Biol; 2021; 81(4):1007-1022. PubMed ID: 33175006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.
    Soylu EM; Kurt S; Soylu S
    Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal Effect of Polygodial on Botrytis cinerea, a Fungal Pathogen Affecting Table Grapes.
    Carrasco H; Robles-Kelly C; Rubio J; Olea AF; Martínez R; Silva-Moreno E
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29077000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea.
    Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V
    Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioguided fractionation of procyanidin B2 as potent anti coxsackie virus B and
    Rguez S; Hammami M; Aidi Wannes W; Hamrouni Sellami I
    Int J Environ Health Res; 2024 Jan; 34(1):191-200. PubMed ID: 36264708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action.
    Robles-Kelly C; Rubio J; Thomas M; Sedán C; Martinez R; Olea AF; Carrasco H; Taborga L; Silva-Moreno E
    Pestic Biochem Physiol; 2017 Sep; 141():50-56. PubMed ID: 28911740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea.
    Schnee S; Queiroz EF; Voinesco F; Marcourt L; Dubuis PH; Wolfender JL; Gindro K
    J Agric Food Chem; 2013 Jun; 61(23):5459-67. PubMed ID: 23730921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of postharvest grey mould decay of nectarine by tea polyphenol combined with tea saponin.
    Yang XP; Jiang XD; Chen JJ; Zhang SS
    Lett Appl Microbiol; 2013 Dec; 57(6):502-9. PubMed ID: 23909749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Biological Evaluation of Dipeptide-Based Stilbene Derivatives Bearing a Biheterocyclic Moiety as Potential Fungicides.
    Zhu Y; Lin X; Wen L; He D
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomycin-producing
    Louviot F; Abdelrahman O; Abou-Mansour E; L'Haridon F; Allard P-M; Falquet L; Weisskopf L
    mSphere; 2024 Jun; ():e0066723. PubMed ID: 38864637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-harvest control of gray mold in table grapes using volatile sulfur compounds from Allium sativum.
    Gándara-Ledezma A; Corrales-Maldonado C; Rivera-Domínguez M; Martínez-Téllez MÁ; Vargas-Arispuro I
    J Sci Food Agric; 2015 Feb; 95(3):497-503. PubMed ID: 24862582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial, Antidiabetic, Antioxidant, and Anticoagulant Activities of
    Al-Rajhi AMH; Bakri MM; Qanash H; Alzahrani HY; Halawani H; Algaydi MA; Abdelghany TM
    Molecules; 2023 Nov; 28(21):. PubMed ID: 37959821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crucial role of Ca
    Song PP; Wang Y; Hou YP; Mao XW; Liu ZL; Wei M; Yu JP; Wang B; Qian YY; Yan L; Xu S; Jiang YQ; Zhou DQ; Yin M; Dou J
    Pest Manag Sci; 2022 Nov; 78(11):4649-4659. PubMed ID: 35866518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.