BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37767855)

  • 1. Robust assembly of the aldehyde dehydrogenase Ald4p in Saccharomyces cerevisiae.
    Nasalingkhan C; Sirinonthanawech N; Noree C
    Biol Open; 2023 Oct; 12(10):. PubMed ID: 37767855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled regulations of enzymatic activity and structure formation of aldehyde dehydrogenase Ald4p.
    Noree C; Sirinonthanawech N
    Biol Open; 2020 Apr; 9(4):. PubMed ID: 32295831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae.
    Miyagi H; Kawai S; Murata K
    J Biol Chem; 2009 Mar; 284(12):7553-60. PubMed ID: 19158096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation.
    Remize F; Andrieu E; Dequin S
    Appl Environ Microbiol; 2000 Aug; 66(8):3151-9. PubMed ID: 10919763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different specificities of two aldehyde dehydrogenases from
    Datta S; Annapure US; Timson DJ
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28126723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae.
    Misonou Y; Kikuchi M; Sato H; Inai T; Kuroiwa T; Tanaka K; Miyakawa I
    Biol Open; 2014 Apr; 3(5):387-96. PubMed ID: 24771619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial NAD dependent aldehyde dehydrogenase either from yeast or human replaces yeast cytoplasmic NADP dependent aldehyde dehydrogenase for the aerobic growth of yeast on ethanol.
    Mukhopadhyay A; Wei B; Weiner H
    Biochim Biophys Acta; 2013 Jun; 1830(6):3391-8. PubMed ID: 23454351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine.
    Luo Z; Walkey CJ; Madilao LL; Measday V; Van Vuuren HJ
    FEMS Yeast Res; 2013 Aug; 13(5):485-94. PubMed ID: 23692528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways.
    Li Y; Su M; Ge X; Tian P
    Biotechnol Lett; 2013 Oct; 35(10):1609-15. PubMed ID: 23794046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation.
    Saint-Prix F; Bönquist L; Dequin S
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2209-2220. PubMed ID: 15256563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide triggers an acid burst in Saccharomyces cerevisiae to condition the environment of glucose-starved cells.
    Baron JA; Laws KM; Chen JS; Culotta VC
    J Biol Chem; 2013 Feb; 288(7):4557-66. PubMed ID: 23281478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fermentation stress response protein Aaf1p/Yml081Wp regulates acetate production in Saccharomyces cerevisiae.
    Walkey CJ; Luo Z; Madilao LL; van Vuuren HJ
    PLoS One; 2012; 7(12):e51551. PubMed ID: 23240040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the recombinant succinic semi-aldehyde dehydrogenase from Saccharomyces cerevisiae.
    Cao J; Singh NK; Locy RD
    Yeast; 2014 Oct; 31(10):411-20. PubMed ID: 25092794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress.
    Wallace-Salinas V; Brink DP; Ahrén D; Gorwa-Grauslund MF
    BMC Genomics; 2015 Jul; 16(1):514. PubMed ID: 26156140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order septin assembly is driven by GTP-promoted conformational changes: evidence from unbiased mutational analysis in Saccharomyces cerevisiae.
    Weems AD; Johnson CR; Argueso JL; McMurray MA
    Genetics; 2014 Mar; 196(3):711-27. PubMed ID: 24398420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A; del Olmo Ml Ml
    Yeast; 2003 Jun; 20(8):747-59. PubMed ID: 12794936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast.
    Payet LA; Leroux M; Willison JC; Kihara A; Pelosi L; Pierrel F
    Cell Chem Biol; 2016 Oct; 23(10):1241-1250. PubMed ID: 27693056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster.
    Noree C; Sato BK; Broyer RM; Wilhelm JE
    J Cell Biol; 2010 Aug; 190(4):541-51. PubMed ID: 20713603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation.
    Dietvorst J; Brandt A
    Yeast; 2008 Dec; 25(12):891-901. PubMed ID: 19160454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.