BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37768194)

  • 1. Triosephosphate Isomerase: The Crippling Effect of the P168A/I172A Substitution at the Heart of an Enzyme Active Site.
    Hegazy R; Richard JP
    Biochemistry; 2023 Oct; 62(20):2916-2927. PubMed ID: 37768194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp.
    Malabanan MM; Koudelka AP; Amyes TL; Richard JP
    J Am Chem Soc; 2012 Jun; 134(24):10286-98. PubMed ID: 22583393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase.
    Richard JP; Amyes TL; Malabanan MM; Zhai X; Kim KJ; Reinhardt CJ; Wierenga RK; Drake EJ; Gulick AM
    Biochemistry; 2016 May; 55(21):3036-47. PubMed ID: 27149328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase.
    Kulkarni YS; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2019 Oct; 141(40):16139-16150. PubMed ID: 31508957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase.
    Kulkarni YS; Liao Q; Petrović D; Krüger DM; Strodel B; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2017 Aug; 139(30):10514-10525. PubMed ID: 28683550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mutations that probe the interactions between the catalytic and dianion activation sites of triosephosphate isomerase.
    Zhai X; Amyes TL; Wierenga RK; Loria JP; Richard JP
    Biochemistry; 2013 Aug; 52(34):5928-40. PubMed ID: 23909928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Asn11 in Catalysis by Triosephosphate Isomerase.
    Hegazy R; Cordara G; Wierenga RK; Richard JP
    Biochemistry; 2023 Jun; 62(11):1794-1806. PubMed ID: 37162263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe.
    Richard JP; Cristobal JR; Amyes TL
    Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wildtype and engineered monomeric triosephosphate isomerase from Trypanosoma brucei: partitioning of reaction intermediates in D2O and activation by phosphite dianion.
    Malabanan MM; Go MK; Amyes TL; Richard JP
    Biochemistry; 2011 Jun; 50(25):5767-79. PubMed ID: 21553855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach.
    Go MK; Koudelka A; Amyes TL; Richard JP
    Biochemistry; 2010 Jun; 49(25):5377-89. PubMed ID: 20481463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of (R)-glyceraldehyde 3-phosphate in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Biochemistry; 2005 Feb; 44(7):2610-21. PubMed ID: 15709774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
    Amyes TL; Richard JP
    Biochemistry; 2007 May; 46(19):5841-54. PubMed ID: 17444661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnitude and origin of the enhanced basicity of the catalytic glutamate of triosephosphate isomerase.
    Malabanan MM; Nitsch-Velasquez L; Amyes TL; Richard JP
    J Am Chem Soc; 2013 Apr; 135(16):5978-81. PubMed ID: 23560625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme architecture: remarkably similar transition states for triosephosphate isomerase-catalyzed reactions of the whole substrate and the substrate in pieces.
    Zhai X; Amyes TL; Richard JP
    J Am Chem Soc; 2014 Mar; 136(11):4145-8. PubMed ID: 24588650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme Architecture: Amino Acid Side-Chains That Function To Optimize the Basicity of the Active Site Glutamate of Triosephosphate Isomerase.
    Zhai X; Reinhardt CJ; Malabanan MM; Amyes TL; Richard JP
    J Am Chem Soc; 2018 Jul; 140(26):8277-8286. PubMed ID: 29862813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Imperatives for Deprotonation of Carbon Catalyzed by Triosephosphate Isomerase: Enzyme-Activation by Phosphite Dianion.
    Zhai X; Malabanan MM; Amyes TL; Richard JP
    J Phys Org Chem; 2014 Apr; 27(4):269-276. PubMed ID: 24729658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional role of the conserved active site proline of triosephosphate isomerase.
    Casteleijn MG; Alahuhta M; Groebel K; El-Sayed I; Augustyns K; Lambeir AM; Neubauer P; Wierenga RK
    Biochemistry; 2006 Dec; 45(51):15483-94. PubMed ID: 17176070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a ligand-driven conformational change.
    Malabanan MM; Amyes TL; Richard JP
    J Am Chem Soc; 2011 Oct; 133(41):16428-31. PubMed ID: 21939233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescue of K12G triosephosphate isomerase by ammonium cations: the reaction of an enzyme in pieces.
    Go MK; Amyes TL; Richard JP
    J Am Chem Soc; 2010 Sep; 132(38):13525-32. PubMed ID: 20822141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme activation through the utilization of intrinsic dianion binding energy.
    Amyes TL; Malabanan MM; Zhai X; Reyes AC; Richard JP
    Protein Eng Des Sel; 2017 Mar; 30(3):157-165. PubMed ID: 27903763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.