These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37768369)

  • 1. Optical Asymmetry and Structural Complexity in Hierarchically Organized Chiral CuO Nanostructures: Insight into the Geometric and Crystallographic Effects on Cooperative Chirality.
    Samanta D; Shaw M; Shaik MAS; Basu R; Mondal I; Bhattacharya A; Pathak A
    Inorg Chem; 2023 Oct; 62(41):16725-16733. PubMed ID: 37768369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Effects of CuO Nanostructures on Fibrillation of Human Serum Albumin.
    Konar S; Sen S; Pathak A
    J Phys Chem B; 2017 Dec; 121(51):11437-11448. PubMed ID: 29202580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from
    Chan YB; Selvanathan V; Tey LH; Akhtaruzzaman M; Anur FH; Djearamane S; Watanabe A; Aminuzzaman M
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative expression of atomic chirality in inorganic nanostructures.
    Wang PP; Yu SJ; Govorov AO; Ouyang M
    Nat Commun; 2017 Feb; 8():14312. PubMed ID: 28148957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical synthesis of flower-like hybrid Cu(OH)
    Shinde SK; Fulari VJ; Kim DY; Maile NC; Koli RR; Dhaygude HD; Ghodake GS
    Colloids Surf B Biointerfaces; 2017 Aug; 156():165-174. PubMed ID: 28528133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical nanostructures self-assembled from optically active phthalocyanine derivatives bearing four optically active binaphthyl moieties: effect of metal-ligand coordination on the morphology, dimension, and helical pitch of self-assembled nanostructures.
    Wu L; Wang Q; Lu J; Bian Y; Jiang J; Zhang X
    Langmuir; 2010 May; 26(10):7489-97. PubMed ID: 20218550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-Harmonic Generation Optical Rotation Solely Attributable to Chirality in Plasmonic Metasurfaces.
    Collins JT; Hooper DC; Mark AG; Kuppe C; Valev VK
    ACS Nano; 2018 Jun; 12(6):5445-5451. PubMed ID: 29852066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Spectroscopy of Nanostructures.
    Kwon J; Park KH; Choi WJ; Kotov NA; Yeom J
    Acc Chem Res; 2023 Jun; 56(12):1359-1372. PubMed ID: 37256726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids.
    Sabbaghan M; Shahvelayati AS; Madankar K
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():662-8. PubMed ID: 25128679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum.
    Ni J; Liu S; Hu G; Hu Y; Lao Z; Li J; Zhang Q; Wu D; Dong S; Chu J; Qiu CW
    ACS Nano; 2021 Feb; 15(2):2893-2900. PubMed ID: 33497201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective Recognition of Chiral Tryptophan with Achiral Glycine through the Strategy of Chirality Transfer.
    Wu S; Ye Q; Wu D; Tao Y; Kong Y
    Anal Chem; 2020 Sep; 92(17):11927-11934. PubMed ID: 32786461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue.
    Yang M; He J
    J Colloid Interface Sci; 2011 Mar; 355(1):15-22. PubMed ID: 21186032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application.
    George A; Magimai Antoni Raj D; Venci X; Dhayal Raj A; Albert Irudayaraj A; Josephine RL; John Sundaram S; Al-Mohaimeed AM; Al Farraj DA; Chen TW; Kaviyarasu K
    Environ Res; 2022 Jan; 203():111880. PubMed ID: 34400161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.
    Valev VK; Baumberg JJ; Sibilia C; Verbiest T
    Adv Mater; 2013 May; 25(18):2517-34. PubMed ID: 23553650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Selective Chiral Growth of Anisotropic Au Triangular Nanoplates for Tuning the Optical Chirality.
    Tao Y; Sun L; Liu C; Yang G; Sun X; Zhang Q
    Small; 2023 Jul; 19(30):e2301218. PubMed ID: 37029697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface chirality of CuO thin films.
    Widmer R; Haug FJ; Ruffieux P; Gröning O; Bielmann M; Gröning P; Fasel R
    J Am Chem Soc; 2006 Nov; 128(43):14103-8. PubMed ID: 17061893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution.
    Zhao Y; Zhao J; Li Y; Ma D; Hou S; Li L; Hao X; Wang Z
    Nanotechnology; 2011 Mar; 22(11):115604. PubMed ID: 21297232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flower-Like CuO/ZnO Hybrid Hierarchical Nanostructures Grown on Copper Substrate: Glycothermal Synthesis, Characterization, Hydrophobic and Anticorrosion Properties.
    Beshkar F; Khojasteh H; Salavati-Niasari M
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convenient chirality transfer from organics to titania: construction and optical properties.
    Liu XL; Murakami K; Matsukizono H; Tsunega S; Jin RH
    RSC Adv; 2018 Apr; 8(29):15951-15960. PubMed ID: 35542199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.