These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37768408)

  • 1. Caffeine reduces viability, induces apoptosis, inhibits migration and modulates the CD39/CD73 axis in metastatic cutaneous melanoma cells.
    Manica D; da Silva GB; de Lima J; Cassol J; Dallagnol P; Narzetti RA; Moreno M; Bagatini MD
    Purinergic Signal; 2024 Aug; 20(4):385-397. PubMed ID: 37768408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity.
    Häusler SF; Montalbán del Barrio I; Strohschein J; Chandran PA; Engel JB; Hönig A; Ossadnik M; Horn E; Fischer B; Krockenberger M; Heuer S; Seida AA; Junker M; Kneitz H; Kloor D; Klotz KN; Dietl J; Wischhusen J
    Cancer Immunol Immunother; 2011 Oct; 60(10):1405-18. PubMed ID: 21638125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells.
    da Silva GB; Manica D; da Silva AP; Marafon F; Moreno M; Bagatini MD
    Chem Biol Interact; 2023 Apr; 375():110427. PubMed ID: 36863647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1α, 25-Dihydroxyvitamin D3 alters ectonucleotidase expression and activity in human cutaneous melanoma cells.
    Bagatini MD; Bertolin K; Bridi A; Pelinson LP; da Silva Rosa Bonadiman B; Pillat MM; Gonçalves PBD; Ulrich H; Schetinger MRC; Morsch VM
    J Cell Biochem; 2019 Jun; 120(6):9992-10000. PubMed ID: 30548323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death.
    Serra S; Horenstein AL; Vaisitti T; Brusa D; Rossi D; Laurenti L; D'Arena G; Coscia M; Tripodo C; Inghirami G; Robson SC; Gaidano G; Malavasi F; Deaglio S
    Blood; 2011 Dec; 118(23):6141-52. PubMed ID: 21998208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory role of CD39 and CD73 in tumor immunity.
    Kaplinsky N; Williams K; Watkins D; Adams M; Stanbery L; Nemunaitis J
    Future Oncol; 2024; 20(19):1367-1380. PubMed ID: 38652041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of CD39 and a Highly Glycosylated Isoform of Soluble CD73 in the Plasma of Patients with Cervical Cancer: Correlation with Disease Progression.
    Muñóz-Godínez R; de Lourdes Mora-García M; Weiss-Steider B; Montesinos-Montesinos JJ; Del Carmen Aguilar-Lemarroy A; García-Rocha R; Hernández-Montes J; Azucena Don-López C; Ávila-Ibarra LR; Torres-Pineda DB; Molina-Castillo G; Chacón-Salinas R; Vallejo-Castillo L; Pérez-Tapia SM; Monroy-García A
    Mediators Inflamm; 2020; 2020():1678780. PubMed ID: 33488292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD39 and CD73 in the aortic valve-biochemical and immunohistochemical analysis in valve cell populations and its changes in valve mineralization.
    Kaniewska-Bednarczuk E; Kutryb-Zajac B; Sarathchandra P; Pelikant-Malecka I; Sielicka A; Piotrowska I; Slominska EM; Chester AH; Yacoub MH; Smolenski RT
    Cardiovasc Pathol; 2018; 36():53-63. PubMed ID: 30056298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized low-density lipoproteins enhance expression and activity of CD39 and CD73 in the human aortic valve endothelium.
    Kaniewska-Bednarczuk E; Mielcarek M; Chester AH; Slominska EM; Yacoub MH; Smolenski RT
    Nucleosides Nucleotides Nucleic Acids; 2016 Dec; 35(10-12):713-719. PubMed ID: 27906627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectonucleotidase CD73 and CD39 expression in non-small cell lung cancer relates to hypoxia and immunosuppressive pathways.
    Giatromanolaki A; Kouroupi M; Pouliliou S; Mitrakas A; Hasan F; Pappa A; Koukourakis MI
    Life Sci; 2020 Oct; 259():118389. PubMed ID: 32898522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Istradefylline modulates purinergic enzymes and reduces malignancy-associated factors in B16F10 melanoma cells.
    da Silva JLG; Viana AR; Passos DF; Krause LMF; Miron VV; Schetinger MRC; Pillat MM; Palma TV; Leal DBR
    Purinergic Signal; 2023 Dec; 19(4):633-650. PubMed ID: 36522571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression.
    Bono MR; Fernández D; Flores-Santibáñez F; Rosemblatt M; Sauma D
    FEBS Lett; 2015 Nov; 589(22):3454-60. PubMed ID: 26226423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexpression of ecto-5'-nucleotidase/CD73 with specific NTPDases differentially regulates adenosine formation in the rat liver.
    Fausther M; Lecka J; Soliman E; Kauffenstein G; Pelletier J; Sheung N; Dranoff JA; Sévigny J
    Am J Physiol Gastrointest Liver Physiol; 2012 Feb; 302(4):G447-59. PubMed ID: 22135310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological blockade of the CD39/CD73 pathway but not adenosine receptors augments disease in a humanized mouse model of graft-versus-host disease.
    Geraghty NJ; Watson D; Sluyter R
    Immunol Cell Biol; 2019 Jul; 97(6):597-610. PubMed ID: 30957314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the CD39/CD73 Purinergic Pathway in Modulating Arterial Thrombosis in Mice.
    Covarrubias R; Chepurko E; Reynolds A; Huttinger ZM; Huttinger R; Stanfill K; Wheeler DG; Novitskaya T; Robson SC; Dwyer KM; Cowan PJ; Gumina RJ
    Arterioscler Thromb Vasc Biol; 2016 Sep; 36(9):1809-20. PubMed ID: 27417582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical and functional analysis of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and ecto-5'-nucleotidase (CD73) in pig aortic valves.
    Kaniewska E; Sielicka A; Sarathchandra P; Pelikant-Małecka I; Olkowicz M; Słomińska EM; Chester AH; Yacoub MH; Smoleński RT
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):305-12. PubMed ID: 24940684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional characterization of engineered bifunctional fusion proteins of CD39 and CD73 ectonucleotidases.
    Zhong EH; Ledderose C; De Andrade Mello P; Enjyoji K; Lunderberg JM; Junger W; Robson SC
    Am J Physiol Cell Physiol; 2021 Jan; 320(1):C15-C29. PubMed ID: 33052071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas.
    Xu S; Shao QQ; Sun JT; Yang N; Xie Q; Wang DH; Huang QB; Huang B; Wang XY; Li XG; Qu X
    Neuro Oncol; 2013 Sep; 15(9):1160-72. PubMed ID: 23737488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypical analysis of ectoenzymes CD39/CD73 and adenosine receptor 2A in CD4
    Han L; Sugiyama H; Zhang Q; Yan K; Fang X; McCormick TS; Cooper KD; Huang Q
    Australas J Dermatol; 2018 Feb; 59(1):e31-e38. PubMed ID: 28295154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability in CD39 and CD73 protein levels in uveal melanoma patients.
    Harou O; Cros-Perrial E; Alix E; Callet-Bauchu E; Bertheau C; Dumontet C; Devouassoux-Shisheboran M; Jordheim LP
    Nucleosides Nucleotides Nucleic Acids; 2022; 41(11):1099-1108. PubMed ID: 35199627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.