BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37768563)

  • 1. The Role of Proton in High Power Density Vanadium Redox Flow Batteries.
    Huang R; Liu S; He Z; Ye G; Zhu W; Xu H; Wang J
    ACS Nano; 2023 Oct; 17(19):19098-19108. PubMed ID: 37768563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.
    Park M; Ryu J; Cho J
    Chem Asian J; 2015 Oct; 10(10):2096-110. PubMed ID: 25899910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Growth of Amorphous MnO
    Huangyang X; Wang H; Zhou W; Deng Q; Liu Z; Zeng XX; Wu X; Ling W
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32189-32197. PubMed ID: 38870428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Role of Heteroatom Gradient-Distributed Carbon Fibers for Vanadium Redox Flow Batteries with Long Service Life.
    Wu XW; Deng Q; Peng C; Zeng XX; Wu AJ; Zhou CJ; Ma Q; Yin YX; Lu XY; Guo YG
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11451-11458. PubMed ID: 30834741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for High-Rate and Endurable Vanadium Redox Flow Batteries.
    Ling W; Deng Q; Ma Q; Wang HR; Zhou CJ; Xu JK; Yin YX; Wu XW; Zeng XX; Guo YG
    Adv Sci (Weinh); 2018 Dec; 5(12):1801281. PubMed ID: 30581714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO
    Mousavihashemi S; Murcia-López S; Rodriguez-Olguin MA; Gardeniers H; Andreu T; Morante JR; Susarrey Arce A; Flox C
    ChemCatChem; 2022 Dec; 14(23):e202201106. PubMed ID: 37063813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Electroactive Sites of Tungstated Zirconia Catalysts for Vanadium Redox Flow Batteries.
    Demeku AM; Kabtamu DM; Chen GC; Ou YT; Huang ZJ; Chiang TC; Huang HC; Wang CH
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7047-7056. PubMed ID: 38314739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Modification of Carbonous Felt as an Electrode for Vanadium Redox Flow Batteries.
    Ding C; Shen Z; Zhu Y; Cheng Y
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Entropy Oxide of (BiZrMoWCeLa)O
    Demeku AM; Kabtamu DM; Chen GC; Ou YT; Huang ZJ; Hsu NY; Ku HH; Wang YM; Wang CH
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10019-10032. PubMed ID: 38374647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfonated NbS
    Beydaghi H; Bellani S; Najafi L; Oropesa-Nuñez R; Bianca G; Bagheri A; Conticello I; Martín-García B; Kashefi S; Serri M; Liao L; Sofer Z; Pellegrini V; Bonaccorso F
    Nanoscale; 2022 Apr; 14(16):6152-6161. PubMed ID: 35389414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Electrolyte Additives in Vanadium Redox Flow Batteries.
    Tian W; Du H; Wang J; Weigand JJ; Qi J; Wang S; Li L
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries.
    Cho H; Krieg HM; Kerres JA
    Membranes (Basel); 2018 Jun; 8(2):. PubMed ID: 29921771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation.
    Ma Q; Zeng XX; Zhou C; Deng Q; Wang PF; Zuo TT; Zhang XD; Yin YX; Wu X; Chai LY; Guo YG
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22381-22388. PubMed ID: 29902919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bunch-Like Tertiary Amine Grafted Polysulfone Membrane for VRFBs with Simultaneously High Proton Conductivity and Low Vanadium Ion Permeability.
    Tan Q; Lu S; Si J; Wang H; Wu C; Li X; Xiang Y
    Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28195670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Electrolyte with Elevated Average Valence for Suppressing the Capacity Decay of Vanadium Redox Flow Batteries.
    Wang Z; Guo Z; Ren J; Li Y; Liu B; Fan X; Zhao T
    ACS Cent Sci; 2023 Jan; 9(1):56-63. PubMed ID: 36712495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspergillus Niger Derived Wrinkle-Like Carbon as Superior Electrode for Advanced Vanadium Redox Flow Batteries.
    Deng Q; Zhou WB; Wang HR; Fu N; Wu XW; Wu YP
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300640. PubMed ID: 37088735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on the Applications of Biomass-Derived Carbon Materials in Vanadium Redox Flow Batteries.
    Doǧan H; Taş M; Meşeli T; Elden G; Genc G
    ACS Omega; 2023 Sep; 8(38):34310-34327. PubMed ID: 37779984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries.
    Chen D; Hickner MA
    Phys Chem Chem Phys; 2013 Jul; 15(27):11299-305. PubMed ID: 23732218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Index Facet Polyhedron-Shaped Binary Cerium Titanium Oxide for High-Voltage Aqueous Zinc-Vanadium Redox Flow Batteries.
    Choi J; Park J; Park J; Kim M; Lee S; Cho CR; Lee JH; Park Y; Kim MG; Choi J; Park JW; Park M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55692-55702. PubMed ID: 37981729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode Treatments for Redox Flow Batteries: Translating Our Understanding from Vanadium to Aqueous-Organic.
    Agarwal H; Roy E; Singh N; Klusener PAA; Stephens RM; Zhou QT
    Adv Sci (Weinh); 2024 Jan; 11(1):e2307209. PubMed ID: 37973559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.