These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. TRIOMPHE: Transcriptome-Based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning. Kaitoh K; Yamanishi Y J Chem Inf Model; 2021 Sep; 61(9):4303-4320. PubMed ID: 34528432 [TBL] [Abstract][Full Text] [Related]
3. De novo drug design based on patient gene expression profiles via deep learning. Yamanaka C; Uki S; Kaitoh K; Iwata M; Yamanishi Y Mol Inform; 2023 Aug; 42(8-9):e2300064. PubMed ID: 37475603 [TBL] [Abstract][Full Text] [Related]
4. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers. Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054 [TBL] [Abstract][Full Text] [Related]
5. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. Wang M; Hsieh CY; Wang J; Wang D; Weng G; Shen C; Yao X; Bing Z; Li H; Cao D; Hou T J Med Chem; 2022 Jul; 65(13):9478-9492. PubMed ID: 35713420 [TBL] [Abstract][Full Text] [Related]
6. Bayesian Optimization in the Latent Space of a Variational Autoencoder for the Generation of Selective FLT3 Inhibitors. Chandra R; Horne RI; Vendruscolo M J Chem Theory Comput; 2024 Jan; 20(1):469-476. PubMed ID: 38112559 [TBL] [Abstract][Full Text] [Related]
7. Deep Generation Model Guided by the Docking Score for Active Molecular Design. Yang Y; Hsieh CY; Kang Y; Hou T; Liu H; Yao X J Chem Inf Model; 2023 May; 63(10):2983-2991. PubMed ID: 37163364 [TBL] [Abstract][Full Text] [Related]
8. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer. Liao Z; Xie L; Mamitsuka H; Zhu S Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576008 [TBL] [Abstract][Full Text] [Related]
9. cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation. Wang Y; Zhao H; Sciabola S; Wang W Molecules; 2023 May; 28(11):. PubMed ID: 37298906 [TBL] [Abstract][Full Text] [Related]
10. Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sawada R; Iwata M; Tabei Y; Yamato H; Yamanishi Y Sci Rep; 2018 Jan; 8(1):156. PubMed ID: 29317676 [TBL] [Abstract][Full Text] [Related]
11. Automatic generation of functional peptides with desired bioactivity and membrane permeability using Bayesian optimization. Fukunaga I; Matsukiyo Y; Kaitoh K; Yamanishi Y Mol Inform; 2024 Apr; 43(4):e202300148. PubMed ID: 38182544 [TBL] [Abstract][Full Text] [Related]
12. Modern machine learning for tackling inverse problems in chemistry: molecular design to realization. Sridharan B; Goel M; Priyakumar UD Chem Commun (Camb); 2022 Apr; 58(35):5316-5331. PubMed ID: 35416193 [TBL] [Abstract][Full Text] [Related]
13. Generative chemistry: drug discovery with deep learning generative models. Bian Y; Xie XQ J Mol Model; 2021 Feb; 27(3):71. PubMed ID: 33543405 [TBL] [Abstract][Full Text] [Related]
14. De Novo Design of Molecules with Multiaction Potential from Differential Gene Expression using Variational Autoencoder. Pravalphruekul N; Piriyajitakonkij M; Phunchongharn P; Piyayotai S J Chem Inf Model; 2023 Jul; 63(13):3999-4011. PubMed ID: 37347587 [TBL] [Abstract][Full Text] [Related]
15. UnCorrupt SMILES: a novel approach to de novo design. Schoenmaker L; Béquignon OJM; Jespers W; van Westen GJP J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579 [TBL] [Abstract][Full Text] [Related]
16. DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design. Song T; Ren Y; Wang S; Han P; Wang L; Li X; Rodriguez-Patón A Methods; 2023 Mar; 211():10-22. PubMed ID: 36764588 [TBL] [Abstract][Full Text] [Related]
17. Developing a Generative Model Utilizing Self-attention Networks: Application to Materials/Drug Discovery. Kondo M Mol Inform; 2021 Oct; 40(10):e2100102. PubMed ID: 34432953 [TBL] [Abstract][Full Text] [Related]
18. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra. Shrivastava AD; Swainston N; Samanta S; Roberts I; Wright Muelas M; Kell DB Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944436 [TBL] [Abstract][Full Text] [Related]
19. Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Griffiths RR; Hernández-Lobato JM Chem Sci; 2020 Jan; 11(2):577-586. PubMed ID: 32190274 [TBL] [Abstract][Full Text] [Related]
20. Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity. Ochiai T; Inukai T; Akiyama M; Furui K; Ohue M; Matsumori N; Inuki S; Uesugi M; Sunazuka T; Kikuchi K; Kakeya H; Sakakibara Y Commun Chem; 2023 Nov; 6(1):249. PubMed ID: 37973971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]