BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37768640)

  • 1. Conformational Switch of the 250s Loop Enables the Efficient Transglycosylation in GH Family 77.
    Guo Z; Wang L; Rao D; Liu W; Xue M; Fu Q; Lu M; Su L; Chen S; Wang B; Wu J
    J Chem Inf Model; 2023 Oct; 63(19):6118-6128. PubMed ID: 37768640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus.
    Jung JH; Jung TY; Seo DH; Yoon SM; Choi HC; Park BC; Park CS; Woo EJ
    Proteins; 2011 Feb; 79(2):633-44. PubMed ID: 21117235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Hydrolysis and Transglycosylation Reactions Catalyzed by
    Romero-Téllez S; Lluch JM; González-Lafont À; Masgrau L
    Front Chem; 2019; 7():200. PubMed ID: 31024890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans.
    Przylas I; Terada Y; Fujii K; Takaha T; Saenger W; Sträter N
    Eur J Biochem; 2000 Dec; 267(23):6903-13. PubMed ID: 11082203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single Hydrogen Bond Controls the Selectivity of Transglycosylation vs Hydrolysis in Family 13 Glycoside Hydrolases.
    Guo Z; Wang L; Su L; Chen S; Xia W; André I; Rovira C; Wang B; Wu J
    J Phys Chem Lett; 2022 Jun; 13(24):5626-5632. PubMed ID: 35704841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site dynamics and catalytic mechanism in arabinan hydrolysis catalyzed by GH43 endo-arabinanase from QM/MM molecular dynamics simulation and potential energy surface.
    Meelua W; Wanjai T; Thinkumrob N; Oláh J; Mujika JI; Ketudat-Cairns JR; Hannongbua S; Jitonnom J
    J Biomol Struct Dyn; 2022 Oct; 40(16):7439-7449. PubMed ID: 33715601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of conformational dynamics and inhibitor binding in the phosphodiesterase-5 family.
    Tripathi S; Cote RH; Vashisth H
    Protein Sci; 2023 Aug; 32(8):e4720. PubMed ID: 37407431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis for the Interconversion of Maltodextrins by MalQ, the Amylomaltase of Escherichia coli.
    Weiss SC; Skerra A; Schiefner A
    J Biol Chem; 2015 Aug; 290(35):21352-64. PubMed ID: 26139606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-amylase-like transglycosylase.
    Barends TR; Bultema JB; Kaper T; van der Maarel MJ; Dijkhuizen L; Dijkstra BW
    J Biol Chem; 2007 Jun; 282(23):17242-9. PubMed ID: 17420245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyltransferase.
    van der Veen BA; Leemhuis H; Kralj S; Uitdehaag JC; Dijkstra BW; Dijkhuizen L
    J Biol Chem; 2001 Nov; 276(48):44557-62. PubMed ID: 11555657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QM/MM Simulations of Enzymatic Hydrolysis of Cellulose: Probing the Viability of an Endocyclic Mechanism for an Inverting Cellulase.
    Pereira CS; Silveira RL; Skaf MS
    J Chem Inf Model; 2021 Apr; 61(4):1902-1912. PubMed ID: 33760586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of second glucan binding site including tyrosines 54 and 101 in Thermus aquaticus amylomaltase.
    Fujii K; Minagawa H; Terada Y; Takaha T; Kuriki T; Shimada J; Kaneko H
    J Biosci Bioeng; 2007 Feb; 103(2):167-73. PubMed ID: 17368400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distal Hydrophobic Loop Modulates the Copper Active Site and Reaction of AA13 Polysaccharide Monooxygenases.
    Ngo ST; Phan HN; Luu CX; Le CN; Ho GT; Ngo NTC; Le LQ; Mai BK; Phung HTT; Nguyen HD; Vu KB; Vu VV
    J Phys Chem B; 2022 Oct; 126(39):7567-7578. PubMed ID: 36137238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure dictates the mechanism of ligand recognition in the histidine and maltose binding proteins.
    Jayanthi LP; Mascarenhas NM; Gosavi S
    Curr Res Struct Biol; 2020; 2():180-190. PubMed ID: 34235478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting.
    Cheng X; Shaltiel S; Taylor SS
    Biochemistry; 1998 Oct; 37(40):14005-13. PubMed ID: 9760235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation.
    Dutta D; Mishra S
    J Phys Chem B; 2017 Jul; 121(29):7075-7085. PubMed ID: 28664734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM modelling of ketosteroid isomerase reactivity indicates that active site closure is integral to catalysis.
    van der Kamp MW; Chaudret R; Mulholland AJ
    FEBS J; 2013 Jul; 280(13):3120-31. PubMed ID: 23356661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic itinerary in 1,3-1,4-β-glucanase unraveled by QM/MM metadynamics. Charge is not yet fully developed at the oxocarbenium ion-like transition state.
    Biarnés X; Ardèvol A; Iglesias-Fernández J; Planas A; Rovira C
    J Am Chem Soc; 2011 Dec; 133(50):20301-9. PubMed ID: 22044419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.