These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3776885)

  • 21. The role of mesenchyme-like tissue in the pathogenesis of thanatophoric dysplasia.
    Ornoy A; Adomian GE; Eteson DJ; Burgeson RE; Rimoin DL
    Am J Med Genet; 1985 Aug; 21(4):613-30. PubMed ID: 4025393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ets transcription factors and targets in osteogenesis.
    Raouf A; Seth A
    Oncogene; 2000 Dec; 19(55):6455-63. PubMed ID: 11175361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skeletal growth and chondroid tissue.
    Dhem A; Goret-Nicaise M; Dambrain R; Nyssen-Behets C; Lengelé B; Manzanares MC
    Arch Ital Anat Embriol; 1989; 94(3):237-41. PubMed ID: 2699551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skull development during anuran metamorphosis: I. Early development of the first three bones to form--the exoccipital, the parasphenoid, and the frontoparietal.
    Hanken J; Hall BK
    J Morphol; 1988 Mar; 195(3):247-56. PubMed ID: 3379643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone-forming and bone-resorbing cell lines derived from bone marrow in tissue culture.
    Hirano H; Urist MR
    Clin Orthop Relat Res; 1981; (154):234-48. PubMed ID: 7009010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Three dimensional ultrastructure of the chondroid bone cell on the upper pharyngeal jaw in the fish, Cichasoma nigrofasiatumum].
    Okusa N; Egawa K; Segawa K
    Showa Shigakkai Zasshi; 1989 Dec; 9(4):430-6. PubMed ID: 2641191
    [No Abstract]   [Full Text] [Related]  

  • 28. The development of acellularity of the vertebral bone of the Japanese medaka, Oryzias latipes (Teleostei; Cyprinidontidae).
    Ekanayake S; Hall BK
    J Morphol; 1987 Sep; 193(3):253-61. PubMed ID: 3682003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Repair of articular cartilage defect with poly-lactide-co-glycolide loaded with recombinant human bone morphogenetic protein in rabbits].
    Cui Y; Wu J; Hu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1233-7. PubMed ID: 18069483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro.
    Mulari MT; Qu Q; Härkönen PL; Väänänen HK
    Calcif Tissue Int; 2004 Sep; 75(3):253-61. PubMed ID: 15148559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice.
    Zhou H; Mak W; Kalak R; Street J; Fong-Yee C; Zheng Y; Dunstan CR; Seibel MJ
    Development; 2009 Feb; 136(3):427-36. PubMed ID: 19141672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells.
    Gurevitch O; Kurkalli BG; Prigozhina T; Kasir J; Gaft A; Slavin S
    Stem Cells; 2003; 21(5):588-97. PubMed ID: 12968113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone morphology and growth potential: a perspective of postnatal normal bone growth.
    van der Linden FP
    Prog Clin Biol Res; 1985; 187():181-200. PubMed ID: 4059232
    [No Abstract]   [Full Text] [Related]  

  • 34. New tetrachromic VOF stain (Type III-G.S) for normal and pathological fish tissues.
    Sarasquete C; Gutiérrez M
    Eur J Histochem; 2005; 49(2):211-27. PubMed ID: 15967749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel mathematical model identifies potential factors regulating bone apposition.
    Martin MJ; Buckland-Wright JC
    Calcif Tissue Int; 2005 Oct; 77(4):250-60. PubMed ID: 16193233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure, formation and role of cartilage canals in the developing bone.
    Blumer MJ; Longato S; Fritsch H
    Ann Anat; 2008; 190(4):305-15. PubMed ID: 18602255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth.
    Witten PE; Hansen A; Hall BK
    J Morphol; 2001 Dec; 250(3):197-207. PubMed ID: 11746460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (Holostei) with particular attention to ganoine formation.
    Sire JY
    Anat Rec; 1994 Oct; 240(2):189-207. PubMed ID: 7992885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and temporal events in tooth development of Astyanax mexicanus.
    Atukorala AD; Franz-Odendaal TA
    Mech Dev; 2014 Nov; 134():42-54. PubMed ID: 25290235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone morphogenetic protein-induced cartilage development in tissue culture.
    Sato K; Urist MR
    Clin Orthop Relat Res; 1984 Mar; (183):180-7. PubMed ID: 6697586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.