These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37768861)

  • 41. Conducting systematic reviews of association (etiology): The Joanna Briggs Institute's approach.
    Moola S; Munn Z; Sears K; Sfetcu R; Currie M; Lisy K; Tufanaru C; Qureshi R; Mattis P; Mu P
    Int J Evid Based Healthc; 2015 Sep; 13(3):163-9. PubMed ID: 26262566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quasi-experimental study designs series-paper 7: assessing the assumptions.
    Bärnighausen T; Oldenburg C; Tugwell P; Bommer C; Ebert C; Barreto M; Djimeu E; Haber N; Waddington H; Rockers P; Sianesi B; Bor J; Fink G; Valentine J; Tanner J; Stanley T; Sierra E; Tchetgen ET; Atun R; Vollmer S
    J Clin Epidemiol; 2017 Sep; 89():53-66. PubMed ID: 28365306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Taboo Against Explicit Causal Inference in Nonexperimental Psychology.
    Grosz MP; Rohrer JM; Thoemmes F
    Perspect Psychol Sci; 2020 Sep; 15(5):1243-1255. PubMed ID: 32727292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Causal inference on neuroimaging data with Mendelian randomisation.
    Taschler B; Smith SM; Nichols TE
    Neuroimage; 2022 Sep; 258():119385. PubMed ID: 35714886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extending Causality Tests with Genetic Instruments: An Integration of Mendelian Randomization with the Classical Twin Design.
    Minică CC; Dolan CV; Boomsma DI; de Geus E; Neale MC
    Behav Genet; 2018 Jul; 48(4):337-349. PubMed ID: 29882082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modernizing the Bradford Hill criteria for assessing causal relationships in observational data.
    Cox LA
    Crit Rev Toxicol; 2018 Sep; 48(8):682-712. PubMed ID: 30433840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using Mendelian randomisation to assess causality in observational studies.
    Pagoni P; Dimou NL; Murphy N; Stergiakouli E
    Evid Based Ment Health; 2019 May; 22(2):67-71. PubMed ID: 30979719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption.
    Hartwig FP; Davey Smith G; Bowden J
    Int J Epidemiol; 2017 Dec; 46(6):1985-1998. PubMed ID: 29040600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A definition of causal effect for epidemiological research.
    Hernán MA
    J Epidemiol Community Health; 2004 Apr; 58(4):265-71. PubMed ID: 15026432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates.
    Greenland S
    Eur J Epidemiol; 2017 Jan; 32(1):3-20. PubMed ID: 28220361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ensuring Causal, Not Casual, Inference.
    Musci RJ; Stuart E
    Prev Sci; 2019 Apr; 20(3):452-456. PubMed ID: 30613853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Causal inference in medicine part I--counterfactual models--an approach to clarifying discussions in research and applied public health].
    Suzuki E; Komatsu H; Yorifuji T; Yamamoto E; Doi H; Tsuda T
    Nihon Eiseigaku Zasshi; 2009 Sep; 64(4):786-95. PubMed ID: 19797847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Causal Inference Framework: A Primer on Concepts and Methods for Improving the Study of Well-Woman Childbearing Processes.
    Tilden EL; Snowden JM
    J Midwifery Womens Health; 2018 Nov; 63(6):700-709. PubMed ID: 29883528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relaxed covariate overlap and margin-based causal effect estimation.
    Ghosh D
    Stat Med; 2018 Dec; 37(28):4252-4265. PubMed ID: 30168168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeted maximum likelihood based causal inference: Part I.
    van der Laan MJ
    Int J Biostat; 2010; 6(2):Article 2. PubMed ID: 21969992
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mendelian Randomization as an Approach to Assess Causality Using Observational Data.
    Sekula P; Del Greco M F; Pattaro C; Köttgen A
    J Am Soc Nephrol; 2016 Nov; 27(11):3253-3265. PubMed ID: 27486138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the Causal Interpretation of Rate-Change Methods: The Prior Event Rate Ratio and Rate Difference.
    van Aalst R; Thommes E; Postma M; Chit A; Dahabreh IJ
    Am J Epidemiol; 2021 Jan; 190(1):142-149. PubMed ID: 32596726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial.
    Smith MJ; Mansournia MA; Maringe C; Zivich PN; Cole SR; Leyrat C; Belot A; Rachet B; Luque-Fernandez MA
    Stat Med; 2022 Jan; 41(2):407-432. PubMed ID: 34713468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A biologist's guide to model selection and causal inference.
    Laubach ZM; Murray EJ; Hoke KL; Safran RJ; Perng W
    Proc Biol Sci; 2021 Jan; 288(1943):20202815. PubMed ID: 33499782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.