BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37769461)

  • 1. Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data.
    Irshad MT; Li F; Nisar MA; Huang X; Buss M; Kloep L; Peifer C; Kozusznik B; Pollak A; Pyszka A; Flak O; Grzegorzek M
    Comput Biol Med; 2023 Nov; 166():107489. PubMed ID: 37769461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficient Machine Learning-Based Emotional Valence Recognition Approach Towards Wearable EEG.
    Abdel-Hamid L
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors.
    Irshad MT; Nisar MA; Huang X; Hartz J; Flak O; Li F; Gouverneur P; Piet A; Oltmanns KM; Grzegorzek M
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A federated learning method for real-time emotion state classification from multi-modal streaming.
    Nandi A; Xhafa F
    Methods; 2022 Aug; 204():340-347. PubMed ID: 35314343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices.
    Montesinos V; Dell'Agnola F; Arza A; Aminifar A; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2196-2201. PubMed ID: 31946337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

  • 8. Decoding the neural signatures of valence and arousal from portable EEG headset.
    Garg N; Garg R; Anand A; Baths V
    Front Hum Neurosci; 2022; 16():1051463. PubMed ID: 36561835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition.
    Zhang J; Chen M; Zhao S; Hu S; Shi Z; Cao Y
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning.
    Li J; Hua H; Xu Z; Shu L; Xu X; Kuang F; Wu S
    Comput Biol Med; 2022 Jun; 145():105519. PubMed ID: 35585734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-based Emotion Detection Using Unsupervised Transfer Learning.
    Gonzalez HA; Yoo J; Elfadel IM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():694-697. PubMed ID: 31945992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding auditory-evoked response in affective states using wearable around-ear EEG system.
    Choi J; Kaongoen N; Choi H; Kim M; Kim BH; Jo S
    Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37591224
    [No Abstract]   [Full Text] [Related]  

  • 13. Online Learning for Wearable EEG-Based Emotion Classification.
    Moontaha S; Schumann FEF; Arnrich B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach.
    Asghar MA; Khan MJ; Fawad ; Amin Y; Rizwan M; Rahman M; Badnava S; Mirjavadi SS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiration Based Non-Invasive Approach for Emotion Recognition Using Impulse Radio Ultra Wide Band Radar and Machine Learning.
    Siddiqui HUR; Shahzad HF; Saleem AA; Khan Khakwani AB; Rustam F; Lee E; Ashraf I; Dudley S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. M1M2: Deep-Learning-Based Real-Time Emotion Recognition from Neural Activity.
    Akter S; Prodhan RA; Pias TS; Eisenberg D; Fresneda Fernandez J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emotion Recognition from Multiband EEG Signals Using CapsNet.
    Chao H; Dong L; Liu Y; Lu B
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31086110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Supervised EEG Emotion Recognition Models Based on CNN.
    Wang X; Ma Y; Cammon J; Fang F; Gao Y; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1952-1962. PubMed ID: 37015115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition.
    Dissanayake T; Rajapaksha Y; Ragel R; Nawinne I
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.