BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 37769558)

  • 1. Characterization and metabolism pathway of volatile compounds in walnut oil obtained from various ripening stages via HS-GC-IMS and HS-SPME-GC-MS.
    Xi BN; Zhang JJ; Xu X; Li C; Shu Y; Zhang Y; Shi X; Shen Y
    Food Chem; 2024 Mar; 435():137547. PubMed ID: 37769558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study on the Volatile Organic Compounds and Characteristic Flavor Fingerprints of Five Varieties of Walnut Oil in Northwest China Using Using Headspace Gas Chromatography-Ion Mobility Spectrometry.
    Sun L; Qi Y; Meng M; Cui K
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of aroma active compounds in walnut oil by monolithic material adsorption extraction of RSC18 combined with gas chromatography-olfactory-mass spectrometry.
    Xu Y; Bi S; Xiong C; Dai Y; Zhou Q; Liu Y
    Food Chem; 2023 Feb; 402():134303. PubMed ID: 36152552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS.
    Qi H; Ding S; Pan Z; Li X; Fu F
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33352716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of aroma active compounds in cold- and hot-pressed walnut oil by comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry and headspace-gas chromatography-ion mobility spectrometry.
    Xu Y; Bi S; Niu X; Chen Y; Liu Y; Zhou Q
    Food Res Int; 2023 Jan; 163():112208. PubMed ID: 36596141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS-SPME/GC-MS and HS-GC-IMS.
    Xiao Y; Huang Y; Chen Y; Xiao L; Zhang X; Yang C; Li Z; Zhu M; Liu Z; Wang Y
    Curr Res Food Sci; 2022; 5():1788-1807. PubMed ID: 36268133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of Volatile Compounds in the Flower Buds of Three
    Yue Y; Yin J; Xie J; Wu S; Ding H; Han L; Bie S; Song W; Zhang Y; Song X; Yu H; Li Z
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination and Characterization of the Volatile Organic Compounds in
    Li C; Wan H; Wu X; Yin J; Zhu L; Chen H; Song X; Han L; Yang W; Yu H; Li Z
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination and characterization of different coconut water (CW) by their phenolic composition and volatile organic compounds (VOCs) using LC-MS/MS, HS-SPME-GC-MS, and HS-GC-IMS.
    Zhang W; Chen Y; Yun Y; Li C; Fang Y; Zhang W
    J Food Sci; 2023 Sep; 88(9):3758-3772. PubMed ID: 37530630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS.
    Guo Y; Chen D; Dong Y; Ju H; Wu C; Lin S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():46-55. PubMed ID: 30241073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an E-nose, HS-SPME-GC-MS, HS-GC-IMS, and sensory analysis.
    Xiao N; Xu H; Jiang X; Sun T; Luo Y; Shi W
    Food Res Int; 2022 Aug; 158():111584. PubMed ID: 35840265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of key aroma compounds in low-salt fermented sour fish by gas chromatography-mass spectrometry, odor activity values, aroma recombination and omission experiments.
    Zhang X; Gao P; Xia W; Jiang Q; Liu S; Xu Y
    Food Chem; 2022 Dec; 397():133773. PubMed ID: 35908468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Headspace Solid-Phase Micro-Extraction Conditions (HS-SPME) and Identification of Major Volatile Aroma-Active Compounds in Chinese Chive (
    Xie B; Wu Q; Wei S; Li H; Wei J; Hanif M; Li J; Liu Z; Xiao X; Yu J
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave pretreatment of camellia (Camellia oleifera Abel.) seeds: Effect on oil flavor.
    He J; Wu X; Yu Z
    Food Chem; 2021 Dec; 364():130388. PubMed ID: 34182360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination and characterization of volatile organic compounds in Lonicerae Japonicae flos and Lonicerae flos using multivariate statistics combined with headspace gas chromatography-ion mobility spectrometry and headspace solid-phase microextraction gas chromatography-mass spectrometry techniques.
    Wu T; Yin J; Wu X; Li W; Bie S; Zhao J; Song X; Yu H; Li Z
    Rapid Commun Mass Spectrom; 2024 Mar; 38(6):e9693. PubMed ID: 38356085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC-MS-O, GC-IMS, and E-nose.
    Li C; Al-Dalali S; Wang Z; Xu B; Zhou H
    Food Chem; 2022 Aug; 386():132728. PubMed ID: 35509168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato.
    Zhang R; Tang C; Jiang B; Mo X; Wang Z
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of volatile organic compounds and potential odour compounds in food contact paperboard using headspace two-dimensional GC-QTOF-MS.
    Li D; Zeng Y; Ye ZK; Li HK; Li YZ; Dong B; Su QZ; Lin QB; Xiao J; Zhong HN
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Nov; 40(11):1482-1493. PubMed ID: 37831931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aroma characterization of a wild plant (Sanguisorba albanica) from Kosovo using multiple headspace solid phase microextraction combined with gas chromatography-mass spectrometry-olfactometry.
    Sabbatini A; Jurnatan Y; Fraatz MA; Govori S; Haziri A; Millaku F; Zorn H; Zhang Y
    Food Res Int; 2019 Jun; 120():514-522. PubMed ID: 31000266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electron-beam irradiation on volatile flavor compounds of salmon fillets by the molecular sensory science technique.
    Guo H; Feng T; Qi W; Kong Q; Yue L; Wang H
    J Food Sci; 2021 Jan; 86(1):184-193. PubMed ID: 33249575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.