BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37769644)

  • 1. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers.
    Pei H; Zhao J; Peng W; Dai Q; Wei Y
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37769644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of nonlocal dielectric response on the surface-enhanced Raman and fluorescence spectra of molecular systems.
    Wei Y; Pei H; Li L; Zhu Y
    J Phys Condens Matter; 2018 Jun; 30(24):245302. PubMed ID: 29726841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna.
    Pei H; Peng W; Zhang J; Zhao J; Qi J; Yu C; Li J; Wei Y
    Nanotechnology; 2024 Jan; 35(15):. PubMed ID: 38176065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-matrix evaluation of the enhancement to resonant Raman scattering and fluorescence of molecules confined in metallic nanoparticle dimers.
    Wei Y; Li L; Sun DX; Wang ML; Zhu YY
    Sci Rep; 2018 Jan; 8(1):1832. PubMed ID: 29382941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes.
    Wei Y; Pei H; Sun D; Duan S; Tian G
    J Phys Condens Matter; 2019 Jun; 31(23):235301. PubMed ID: 30818299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of nonlocal dielectric response on the Au tip-enhanced fluorescence effect.
    Pei H; Wei Y; Dai Q
    J Phys Condens Matter; 2021 Feb; 33(7):075003. PubMed ID: 33152718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range.
    Wei Y; Pei H; Yan B; Zhu Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance-Dependent Plasmon-Enhanced Fluorescence of Submonolayer Rhodamine 6G by Gold Nanoparticles.
    Bian Y; Liu S; Zhang Y; Liu Y; Yang X; Lou S; Wu E; Wu B; Zhang X; Jin Q
    Nanoscale Res Lett; 2021 May; 16(1):90. PubMed ID: 34021820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on surface enhanced Raman scattering of Au and Au@Al
    Yan BX; Zhu YY; Wei Y; Pei H
    Sci Rep; 2021 Apr; 11(1):8391. PubMed ID: 33864018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering.
    Sun AY; Lee YC; Chang SW; Chen SL; Wang HC; Wan D; Chen HL
    Anal Chem; 2021 Mar; 93(9):4299-4307. PubMed ID: 33635644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Fe₃O₄@SiO₂@Ag@COOH NPs/Au Film with Hybrid Localized Surface Plasmon/Surface Plasmon Polariton Modes for Surface-Enhanced Raman Scattering Detection of Thiabendazole.
    Hu X; Bian X; Yu S; Dan K
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2079-2086. PubMed ID: 31492215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-enhanced linear and second-order surface nonlinear optical response of silver nanoparticles fabricated using a femtosecond pulse.
    Zhang L; Lu F; Zhang W; Gao K; Xue T; Liu M; Mao D; Huang L; Gao F; Mei T
    Nanotechnology; 2020 Jan; 31(3):035305. PubMed ID: 31569084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New coupling mechanism of titanium nitride nanosphere dimers at short separation distances.
    Cao P; Chen H; Liang M; Dou J; Cheng L
    Nanotechnology; 2019 Aug; 30(33):335204. PubMed ID: 31035275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-enhanced fluorescence of submonolayer porphyrins by silver-polymer core-shell nanoparticles.
    Niu JX; Pan CD; Liu YT; Lou ST; Wu E; Wu BT; Zhang XL; Jin QY
    Opt Express; 2018 Feb; 26(3):3489-3496. PubMed ID: 29401876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles.
    Pan J; Chen J; Zhao D; Huang Q; Khan Q; Liu X; Tao Z; Zhang Z; Lei W
    Opt Express; 2016 Jan; 24(2):A33-43. PubMed ID: 26832585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Surface of Metallic Gold and Silver Nanoparticles Induced Fluorescence Quenching of Meso-Terakis (4-Sulfonatophenyl) Porphyrin (TPPS) and Theoretical-Experimental Comparable.
    Aboalhassan AA; El-Daly SA; Ebeid EM; Sakr MAS
    J Fluoresc; 2022 Nov; 32(6):2257-2269. PubMed ID: 36045307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.