BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37769644)

  • 21. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy.
    Girard A; Gehan H; Crut A; Mermet A; Saviot L; Margueritat J
    Nano Lett; 2016 Jun; 16(6):3843-9. PubMed ID: 27176093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanoworms: Optical properties and simultaneous SERS and fluorescence enhancement.
    Khan HI; Khan GA; Mehmood S; Khan AD; Ahmed W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117111. PubMed ID: 31141771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shell-Isolated Nanoparticle-Enhanced Phosphorescence.
    Meng M; Zhang FL; Yi J; Lin LH; Zhang CL; Bodappa N; Li CY; Zhang SJ; Aroca RF; Tian ZQ; Li JF
    Anal Chem; 2018 Sep; 90(18):10837-10842. PubMed ID: 30136575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics.
    Jo H; Sohn A; Shin KS; Kumar B; Kim JH; Kim DW; Kim SW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1030-5. PubMed ID: 24328244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.
    Zhang T; Gao N; Li S; Lang MJ; Xu QH
    J Phys Chem Lett; 2015 Jun; 6(11):2043-9. PubMed ID: 26266500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localized Surface Plasmon Resonance Sensor Based at Metallic Sphere Dimer Particle.
    Li JY
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1443-446. PubMed ID: 29687982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregation-Induced Plasmon Coupling-Enhanced One- and Two-Photon Excitation Fluorescence by Silver Nanoparticles.
    Zhang DF; Li S; Xu QH; Cao Y
    Langmuir; 2020 May; 36(17):4721-4727. PubMed ID: 32283939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite-difference time-domain studies of the optical properties of nanoshell dimers.
    Oubre C; Nordlander P
    J Phys Chem B; 2005 May; 109(20):10042-51. PubMed ID: 16852215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision.
    Song B; Jiang Z; Liu Z; Wang Y; Liu F; Cronin SB; Yang H; Meng D; Chen B; Hu P; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2020 Nov; 14(11):14769-14778. PubMed ID: 33095557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of Scattering and Near Field of TiO
    Liu M; Jin X; Li S; Billeau JB; Peng T; Li H; Zhao L; Zhang Z; Claverie JP; Razzari L; Zhang J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34714-34723. PubMed ID: 34269047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles.
    Selva Sharma A; Ilanchelian M
    J Phys Chem B; 2015 Jul; 119(30):9461-76. PubMed ID: 26106942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface plasmon enhanced fluorescence: self-consistent classical treatment in the quasi-static limit.
    Genov DA
    Methods Appl Fluoresc; 2023 Apr; 11(3):. PubMed ID: 37015232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near-Infrared-Fluorescent Probes for Bioapplications Based on Silica-Coated Gold Nanobipyramids with Distance-Dependent Plasmon-Enhanced Fluorescence.
    Niu C; Song Q; He G; Na N; Ouyang J
    Anal Chem; 2016 Nov; 88(22):11062-11069. PubMed ID: 27735184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoparticle core size and spacer coating thickness-dependence on metal-enhanced luminescence in optical oxygen sensors.
    Yin W; Sui J; Cao G; Dabiri D
    Talanta; 2023 Jul; 259():123690. PubMed ID: 37027930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband single-molecule fluorescence enhancement based on self-assembled Ag@Au dimer plasmonic nanoantennas.
    Lin Y; Hu J; Zhang W; Jiang L; Yi D; Rujiralai T; Ma J
    Nanoscale; 2022 Dec; 14(47):17550-17560. PubMed ID: 36318052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.