These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37769644)

  • 41. Efficiency of Plasmon-Induced Dual-Mode Fluorescence Enhancement upon Two-Photon Excitation.
    Shokova MA; Bochenkov VE
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reproduction of surface-enhanced resonant Raman scattering and fluorescence spectra of a strong coupling system composed of a single silver nanoparticle dimer and a few dye molecules.
    Itoh T; Yamamoto YS
    J Chem Phys; 2018 Dec; 149(24):244701. PubMed ID: 30599753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmonic molecular nanohybrids-spectral dependence of fluorescence quenching.
    Olejnik M; Bujak Ł; Mackowski S
    Int J Mol Sci; 2012; 13(1):1018-1028. PubMed ID: 22312301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.
    Brus L
    Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere.
    Zhu J; Xu ZJ; Weng GJ; Zhao J; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():43-50. PubMed ID: 29660681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects.
    Tserkezis C; Stefanou N; Wubs M; Mortensen NA
    Nanoscale; 2016 Oct; 8(40):17532-17541. PubMed ID: 27722520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanocap array of Au:Ag composite for surface-enhanced Raman scattering.
    Zhang Y; Wang C; Wang J; Chen L; Li J; Liu Y; Zhao X; Wang Y; Yang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():461-7. PubMed ID: 26253437
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multispectroscopic and bioimaging approach for the interaction of rhodamine 6G capped gold nanoparticles with bovine serum albumin.
    Manjubaashini N; Kesavan MP; Rajesh J; Daniel Thangadurai T
    J Photochem Photobiol B; 2018 Jun; 183():374-384. PubMed ID: 29763760
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon-enhanced fluorescence for ellagic acid detection based on surface structure of gold nanoparticles.
    Yu W; Sun W; Zhang Y; Shen C; Cao X; Song P; Zhu X; Liu M; Yang Y
    Anal Bioanal Chem; 2023 Aug; 415(20):4901-4909. PubMed ID: 37341782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy.
    Zhou Y; Li X; Ren X; Yang L; Liu J
    Analyst; 2014 Oct; 139(19):4799-805. PubMed ID: 24975281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toroidal dipole-modulated dipole-dipole double-resonance in colloidal gold rod-cup nanocrystals for improved SERS and second-harmonic generation.
    Kang HS; Zhao WQ; Zhou T; Ma L; Yang DJ; Chen XB; Ding SJ; Wang QQ
    Nano Res; 2022; 15(10):9461-9469. PubMed ID: 35818567
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors.
    Biroju RK; Marepally BC; Malik P; Dhara S; Gengan S; Maity D; Narayanan TN; Giri PK
    ACS Omega; 2023 Jan; 8(4):4344-4356. PubMed ID: 36743051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Raman amplification in the ultra-small limit of Ag nanoparticles on SiO
    Cortijo-Campos S; Ramírez-Jiménez R; Climent-Pascual E; Aguilar-Pujol M; Jiménez-Villacorta F; Martínez L; Jiménez-Riobóo R; Prieto C; de Andrés A
    Mater Des; 2020 Jul; 192():108702. PubMed ID: 33154608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MoS
    Lin S; Mandavkar R; Burse S; Habib MA; Khalid T; Joni MH; Chung YU; Kunwar S; Lee J
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839137
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy.
    McMahon JM; Henry AI; Wustholz KL; Natan MJ; Freeman RG; Van Duyne RP; Schatz GC
    Anal Bioanal Chem; 2009 Aug; 394(7):1819-25. PubMed ID: 19305981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing.
    Yue W; Liu C; Zha Z; Liu R; Gao J; Shafi M; Feng J; Jiang S
    Opt Express; 2022 Apr; 30(8):13226-13237. PubMed ID: 35472940
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.
    Roelli P; Galland C; Piro N; Kippenberg TJ
    Nat Nanotechnol; 2016 Feb; 11(2):164-9. PubMed ID: 26595330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.