BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37769978)

  • 1. Lytic polysaccharide monooxygenase activity increases productive binding capacity of cellobiohydrolases on cellulose.
    Angeltveit CF; Jeoh T; Horn SJ
    Bioresour Technol; 2023 Dec; 389():129806. PubMed ID: 37769978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in
    Adnan M; Ma X; Xie Y; Waheed A; Liu G
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
    Angeltveit CF; Várnai A; Eijsink VGH; Horn SJ
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):39. PubMed ID: 38461298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases.
    Keller MB; Badino SF; Røjel N; Sørensen TH; Kari J; McBrayer B; Borch K; Blossom BM; Westh P
    J Biol Chem; 2021; 296():100504. PubMed ID: 33675751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of a native lytic polysaccharide monooxygenase from Thermoascus aurantiacus.
    Fritsche S; Hopson C; Gorman J; Gabriel R; Singer SW
    Biotechnol Lett; 2020 Oct; 42(10):1897-1905. PubMed ID: 32557119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent.
    Tokin R; Ipsen JØ; Westh P; Johansen KS
    Biotechnol Lett; 2020 Oct; 42(10):1975-1984. PubMed ID: 32458293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
    Eibinger M; Ganner T; Bubner P; Rošker S; Kracher D; Haltrich D; Ludwig R; Plank H; Nidetzky B
    J Biol Chem; 2014 Dec; 289(52):35929-38. PubMed ID: 25361767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lytic polysaccharide monooxygenases (LPMOs) facilitate cellulose nanofibrils production.
    Moreau C; Tapin-Lingua S; Grisel S; Gimbert I; Le Gall S; Meyer V; Petit-Conil M; Berrin JG; Cathala B; Villares A
    Biotechnol Biofuels; 2019; 12():156. PubMed ID: 31249619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility.
    Song B; Li B; Wang X; Shen W; Park S; Collings C; Feng A; Smith SJ; Walton JD; Ding SY
    Biotechnol Biofuels; 2018; 11():41. PubMed ID: 29467819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface.
    Uchiyama T; Uchihashi T; Ishida T; Nakamura A; Vermaas JV; Crowley MF; Samejima M; Beckham GT; Igarashi K
    Sci Adv; 2022 Dec; 8(51):eade5155. PubMed ID: 36563138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lytic polysaccharide monooxygenase from Myceliophthora thermophila and its synergism with cellobiohydrolases in cellulose hydrolysis.
    Zhou H; Li T; Yu Z; Ju J; Zhang H; Tan H; Li K; Yin H
    Int J Biol Macromol; 2019 Oct; 139():570-576. PubMed ID: 31381927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
    Jensen MS; Klinkenberg G; Bissaro B; Chylenski P; Vaaje-Kolstad G; Kvitvang HF; Nærdal GK; Sletta H; Forsberg Z; Eijsink VGH
    J Biol Chem; 2019 Dec; 294(50):19349-19364. PubMed ID: 31656228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis.
    de Gouvêa PF; Gerolamo LE; Bernardi AV; Pereira LMS; Uyemura SA; Dinamarco TM
    Protein Pept Lett; 2019; 26(5):377-385. PubMed ID: 31237199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates.
    Chalak A; Villares A; Moreau C; Haon M; Grisel S; d'Orlando A; Herpoël-Gimbert I; Labourel A; Cathala B; Berrin JG
    Biotechnol Biofuels; 2019; 12():206. PubMed ID: 31508147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase.
    Kracher D; Forsberg Z; Bissaro B; Gangl S; Preims M; Sygmund C; Eijsink VGH; Ludwig R
    FEBS J; 2020 Mar; 287(5):897-908. PubMed ID: 31532909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermostable bacterial lytic polysaccharide monooxygenase with high operational stability in a wide temperature range.
    Tuveng TR; Jensen MS; Fredriksen L; Vaaje-Kolstad G; Eijsink VGH; Forsberg Z
    Biotechnol Biofuels; 2020 Nov; 13(1):194. PubMed ID: 33292445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.