These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37770245)

  • 21. High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research.
    Twist BA; Neill KF; Bilewitch J; Jeong SY; Sutherland JE; Nelson WA
    PLoS One; 2019; 14(12):e0225645. PubMed ID: 31790447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples.
    Kato A; Hikami M; Kumagai NH; Suzuki A; Nojiri Y; Sakai K
    Mar Environ Res; 2014 Mar; 94():1-6. PubMed ID: 24239067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Etheliaceae fam. nov. (Gigartinales, Rhodophyta), with a clarification of the generitype of Ethelia and the addition of six novel species from warm waters.
    Dixon KR; Saunders GW; Schneider CW; Lane CE
    J Phycol; 2015 Dec; 51(6):1158-71. PubMed ID: 26987010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification.
    Smith JN; Mongin M; Thompson A; Jonker MJ; De'ath G; Fabricius KE
    Glob Chang Biol; 2020 Apr; 26(4):2149-2160. PubMed ID: 32048410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.
    Whalan S; Webster NS; Negri AP
    PLoS One; 2012; 7(1):e30386. PubMed ID: 22295083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification.
    Moore B; Comeau S; Bekaert M; Cossais A; Purdy A; Larcombe E; Puerzer F; McCulloch MT; Cornwall CE
    Proc Biol Sci; 2021 May; 288(1950):20210130. PubMed ID: 33975470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Presence of skeletal banding in a reef-building tropical crustose coralline alga.
    Lewis B; Lough JM; Nash MC; Diaz-Pulido G
    PLoS One; 2017; 12(10):e0185124. PubMed ID: 28976988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The systematics of Lobophora (Dictyotales, Phaeophyceae) in the western Atlantic and eastern Pacific oceans: eight new species.
    Camacho O; Fernández-García C; Vieira C; Gurgel CFD; Norris JN; Freshwater DW; Fredericq S
    J Phycol; 2019 Jun; 55(3):611-624. PubMed ID: 30805921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revision of Corallinaceae (Corallinales, Rhodophyta): recognizing Dawsoniolithon gen. nov., Parvicellularium gen. nov. and Chamberlainoideae subfam. nov. containing Chamberlainium gen. nov. and Pneophyllum.
    Caragnano A; Foetisch A; Maneveldt GW; Millet L; Liu LC; Lin SM; Rodondi G; Payri CE
    J Phycol; 2018 Jun; 54(3):391-409. PubMed ID: 29574890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phymatolithopsis gen. nov. (Hapalidiales, Corallinophycidae, Rhodophyta) based on molecular and morpho-anatomical evidence.
    Jeong SY; Diaz-Pulido G; Maneveldt GW; Gabrielson PW; Nelson WA; Won BY; Cho TO
    J Phycol; 2022 Feb; 58(1):161-178. PubMed ID: 34862980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the Northeast Pacific.
    McCoy SJ
    J Phycol; 2013 Oct; 49(5):830-7. PubMed ID: 27007309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Community assessment of crustose calcifying red algae as coral recruitment substrates.
    Deinhart M; Mills MS; Schils T
    PLoS One; 2022; 17(7):e0271438. PubMed ID: 35867665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Major loss of coralline algal diversity in response to ocean acidification.
    Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific.
    Johnson MD; Fox MD; Kelly ELA; Zgliczynski BJ; Sandin SA; Smith JE
    PLoS One; 2020; 15(2):e0228448. PubMed ID: 32017799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial and temporal patterns of eastern Australia subtropical coral communities.
    Dalton SJ; Roff G
    PLoS One; 2013; 8(9):e75873. PubMed ID: 24058705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crustose coralline algal species host distinct bacterial assemblages on their surfaces.
    Sneed JM; Ritson-Williams R; Paul VJ
    ISME J; 2015 Nov; 9(11):2527-36. PubMed ID: 25918832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coralline algae elevate pH at the site of calcification under ocean acidification.
    Cornwall CE; Comeau S; McCulloch MT
    Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae.
    Webster NS; Soo R; Cobb R; Negri AP
    ISME J; 2011 Apr; 5(4):759-70. PubMed ID: 20944682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-future ocean acidification causes differences in microbial associations within diverse coral reef taxa.
    Webster NS; Negri AP; Flores F; Humphrey C; Soo R; Botté ES; Vogel N; Uthicke S
    Environ Microbiol Rep; 2013 Apr; 5(2):243-51. PubMed ID: 23584968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO₂.
    Johnson MD; Moriarty VW; Carpenter RC
    PLoS One; 2014; 9(2):e87678. PubMed ID: 24505305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.