These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37770329)

  • 1. Detection of extracranial and intracranial calcified carotid artery atheromas in cone beam computed tomography using a deep learning convolutional neural network image segmentation approach.
    Alajaji SA; Amarin R; Masri R; Tavares T; Kumar V; Price JB; Sultan AS
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2024 Jul; 138(1):162-172. PubMed ID: 37770329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT.
    Yeshua T; Ladyzhensky S; Abu-Nasser A; Abdalla-Aslan R; Boharon T; Itzhak-Pur A; Alexander A; Chaurasia A; Cohen A; Sosna J; Leichter I; Nadler C
    Eur Radiol; 2023 Nov; 33(11):7507-7518. PubMed ID: 37191921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.
    Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R
    J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction.
    Minnema J; van Eijnatten M; der Sarkissian H; Doyle S; Koivisto J; Wolff J; Forouzanfar T; Lucka F; Batenburg KJ
    Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34107467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incidental findings in cone beam computed tomography volumes: Calcified head-and-neck atheromas detected during dental evaluation.
    Amarin R; Alshalawi H; Zaghlol R; Price JB; Driscoll CF; Romberg E; Masri R
    J Prosthodont; 2023 Jul; 32(6):489-496. PubMed ID: 36512480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can convolutional neural networks identify external carotid artery calcifications?
    Nelson J; Vaddi A; Tadinada A
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2024 Jul; 138(1):142-148. PubMed ID: 37633789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study.
    Elgarba BM; Van Aelst S; Swaity A; Morgan N; Shujaat S; Jacobs R
    J Dent; 2023 Oct; 137():104639. PubMed ID: 37517787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcified carotid artery atheromas in panoramic radiographs are associated with a first myocardial infarction: a case-control study.
    Gustafsson N; Ahlqvist JB; Näslund U; Wester P; Buhlin K; Gustafsson A; Levring Jäghagen E
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2018 Feb; 125(2):199-204.e1. PubMed ID: 29242130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based fully automatic screening of carotid artery plaques in computed tomography angiography: a multicenter study.
    Zhai D; Liu R; Liu Y; Yin H; Tang W; Yang J; Liu K; Fan G; Ju S; Cai W
    Clin Radiol; 2024 Aug; 79(8):e994-e1002. PubMed ID: 38789330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning with convolutional neural network for estimation of the characterisation of coronary plaques: Validation using IB-IVUS.
    Masuda T; Nakaura T; Funama Y; Oda S; Okimoto T; Sato T; Noda N; Yoshiura T; Baba Y; Arao S; Hiratsuka J; Awai K
    Radiography (Lond); 2022 Feb; 28(1):61-67. PubMed ID: 34404578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain.
    Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH
    Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Detection of Cervical Carotid Artery Calcifications in Cone Beam Computed Tomographic Images Using Deep Convolutional Neural Networks.
    Ajami M; Tripathi P; Ling H; Mahdian M
    Diagnostics (Basel); 2022 Oct; 12(10):. PubMed ID: 36292226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of vertical root fractures by cone-beam computed tomography based on deep learning.
    Yang P; Guo X; Mu C; Qi S; Li G
    Dentomaxillofac Radiol; 2023 Feb; 52(3):20220345. PubMed ID: 36802858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography:A validation study.
    Preda F; Morgan N; Van Gerven A; Nogueira-Reis F; Smolders A; Wang X; Nomidis S; Shaheen E; Willems H; Jacobs R
    J Dent; 2022 Sep; 124():104238. PubMed ID: 35872223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study.
    Ayidh Alqahtani K; Jacobs R; Smolders A; Van Gerven A; Willems H; Shujaat S; Shaheen E
    Eur J Orthod; 2023 Mar; 45(2):169-174. PubMed ID: 36099419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of convolutional neural network training strategies for cone-beam CT image segmentation.
    Minnema J; Wolff J; Koivisto J; Lucka F; Batenburg KJ; Forouzanfar T; van Eijnatten M
    Comput Methods Programs Biomed; 2021 Aug; 207():106192. PubMed ID: 34062493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural network enhancement of fast-scan low-dose cone-beam CT images for head and neck radiotherapy.
    Yuan N; Dyer B; Rao S; Chen Q; Benedict S; Shang L; Kang Y; Qi J; Rong Y
    Phys Med Biol; 2020 Jan; 65(3):035003. PubMed ID: 31842014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning.
    Rossi M; Belotti G; Paganelli C; Pella A; Barcellini A; Cerveri P; Baroni G
    Med Phys; 2021 Nov; 48(11):7112-7126. PubMed ID: 34636429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.