BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37770522)

  • 1. Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres.
    Sharma N; Allardyce BJ; Rajkhowa R; Agrawal R
    Sci Rep; 2023 Sep; 13(1):16327. PubMed ID: 37770522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release fertilizer delivery system derived from rice straw cellulose nanofibres: a circular economy based solution for sustainable development.
    Sharma N; Allardyce BJ; Rajkhowa R; Agrawal R
    Bioengineered; 2023 Dec; 14(1):2242124. PubMed ID: 37548430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmentally-Friendly Extraction of Cellulose Nanofibers from Steam-Explosion Pretreated Sugar Beet Pulp.
    Yang W; Feng Y; He H; Yang Z
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29986494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum).
    Midhun Dominic CD; Raj V; Neenu KV; Begum PMS; Formela K; Saeb MR; Prabhu DD; Poornima Vijayan P; Ajithkumar TG; Parameswaranpillai J
    Int J Biol Macromol; 2022 May; 206():92-104. PubMed ID: 35217088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of Agricultural Waste from Paddy (Rice) Fields for the Synthesis of Nanocellulose.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3622-3629. PubMed ID: 34739814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Development of Cellulosic Bionanocomposites from Forestry Waste Residues for 3D Printing Applications.
    John MJ; Dyanti N; Mokhena T; Agbakoba V; Sithole B
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hemicellulose pre-extraction and cellulose nanofiber on the properties of rice straw pulp.
    Hasanjanzadeh H; Hedjazi S; Ashori A; Mahdavi S; Yousefi H
    Int J Biol Macromol; 2014 Jul; 68():198-204. PubMed ID: 24802854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consecutive Organosolv and Alkaline Pretreatment: An Efficient Approach toward the Production of Cellulose from Rice Straw.
    Aggarwal N; Pal P; Sharma N; Saravanamurugan S
    ACS Omega; 2021 Oct; 6(41):27247-27258. PubMed ID: 34693145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice straw cellulose nanofibrils reinforced poly(vinyl alcohol) composite films.
    Wang Z; Qiao X; Sun K
    Carbohydr Polym; 2018 Oct; 197():442-450. PubMed ID: 30007633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose from dinoflagellates as a versatile and environmentally friendly platform for the production of functionalised cellulose nanofibres.
    Alizade A; Reich T; Jantschke A
    Int J Biol Macromol; 2024 Jun; 272(Pt 1):132804. PubMed ID: 38825272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Value-Added Utilization of Wheat Straw: From Cellulose and Cellulose Nanofiber to All-Cellulose Nanocomposite Film.
    Bian H; Yang Y; Tu P; Chen JY
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization.
    Kaushik A; Singh M
    Carbohydr Res; 2011 Jan; 346(1):76-85. PubMed ID: 21094489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly fluorescent composite of boron nitride quantum dots decorated on cellulose nanofibers for detection and removal of Hg(II) ions from waste water.
    Tewatia P; Kaushik V; Jyoti MS; Pathania D; Singhal S; Kaushik A
    Int J Biol Macromol; 2023 Apr; 234():123728. PubMed ID: 36801283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization.
    Kalita E; Nath BK; Deb P; Agan F; Islam MR; Saikia K
    Carbohydr Polym; 2015 May; 122():308-13. PubMed ID: 25817673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Esterified cellulose nanofibres from saw dust using vegetable oil.
    Mokhena TC; John MJ
    Int J Biol Macromol; 2020 Apr; 148():1109-1117. PubMed ID: 32004608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study on Extraction of Cellulose Fiber from Rice Straw Waste from Chemo-Mechanical and Pulping Method.
    Razali NAM; Mohd Sohaimi R; Othman RNIR; Abdullah N; Demon SZN; Jasmani L; Yunus WMZW; Ya'acob WMHW; Salleh EM; Norizan MN; Halim NA
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of degraded cellulose obtained from steam-exploded wheat straw.
    Sun XF; Xu F; Sun RC; Fowler P; Baird MS
    Carbohydr Res; 2005 Jan; 340(1):97-106. PubMed ID: 15620672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of cellulose-based electrospun fluorescent nanofibres doped with perylene encapsulated in silica nanoparticles for potential flexible electronics.
    Hassabo AG; Mohamed AL; Khattab TA
    Luminescence; 2022 Jan; 37(1):21-27. PubMed ID: 34528376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.