BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37770585)

  • 41. Systemic gene transfer enables optogenetic pacing of mouse hearts.
    Vogt CC; Bruegmann T; Malan D; Ottersbach A; Roell W; Fleischmann BK; Sasse P
    Cardiovasc Res; 2015 May; 106(2):338-43. PubMed ID: 25587047
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electromechanical Assessment of Optogenetically Modulated Cardiomyocyte Activity.
    Kopton RA; Buchmann C; Moss R; Kohl P; Peyronnet R; Schneider-Warme F
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202521
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cationic Channelrhodopsin from the Alga Platymonas subcordiformis as a Promising Optogenetic Tool.
    Idzhilova OS; Smirnova GR; Petrovskaya LE; Kolotova DA; Ostrovsky MA; Malyshev AY
    Biochemistry (Mosc); 2022 Nov; 87(11):1327-1334. PubMed ID: 36509722
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of cardiac optogenetics by vitamin A.
    Keshmiri Neghab H; Goliaei B; Saboury AA; Esmaeeli Djavid G; Pornour M; Hong J; Grusch M
    Biofactors; 2019 Nov; 45(6):983-990. PubMed ID: 31509323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans.
    Shipley FB; Clark CM; Alkema MJ; Leifer AM
    Front Neural Circuits; 2014; 8():28. PubMed ID: 24715856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Voltage imaging to understand connections and functions of neuronal circuits.
    Antic SD; Empson RM; Knöpfel T
    J Neurophysiol; 2016 Jul; 116(1):135-52. PubMed ID: 27075539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optogenetic Tools for Subcellular Applications in Neuroscience.
    Rost BR; Schneider-Warme F; Schmitz D; Hegemann P
    Neuron; 2017 Nov; 96(3):572-603. PubMed ID: 29096074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations.
    Zhu YC; Uradu H; Majeed ZR; Cooper RL
    Physiol Rep; 2016 Feb; 4(3):. PubMed ID: 26834237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sudden Heart Rate Reduction Upon Optogenetic Release of Acetylcholine From Cardiac Parasympathetic Neurons in Perfused Hearts.
    Moreno A; Endicott K; Skancke M; Dwyer MK; Brennan J; Efimov IR; Trachiotis G; Mendelowitz D; Kay MW
    Front Physiol; 2019; 10():16. PubMed ID: 30745877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent progress in optical voltage-sensor technology and applications to cardiac research: from single cells to whole hearts.
    Acker CD; Yan P; Loew LM
    Prog Biophys Mol Biol; 2020 Aug; 154():3-10. PubMed ID: 31474387
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse.
    Lou S; Adam Y; Weinstein EN; Williams E; Williams K; Parot V; Kavokine N; Liberles S; Madisen L; Zeng H; Cohen AE
    J Neurosci; 2016 Oct; 36(43):11059-11073. PubMed ID: 27798186
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KairoSight-3.0: A validated optical mapping software to characterize cardiac electrophysiology, excitation-contraction coupling, and alternans.
    Haq KT; Roberts A; Berk F; Allen S; Swift LM; Posnack NG
    J Mol Cell Cardiol Plus; 2023 Sep; 5():. PubMed ID: 37786807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optogenetic Stimulation of Primary Cardiomyocytes Expressing ChR2.
    Keshmiri Neghab H; Soheilifar MH; Saboury AA; Goliaei B; Hong J; Esmaeeli Djavid G
    J Lasers Med Sci; 2021; 12():e32. PubMed ID: 34733755
    [No Abstract]   [Full Text] [Related]  

  • 56. Cardiac Optogenetics: 2018.
    Boyle PM; Karathanos TV; Trayanova NA
    JACC Clin Electrophysiol; 2018 Feb; 4(2):155-167. PubMed ID: 29749932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward the second generation of optogenetic tools.
    Knöpfel T; Lin MZ; Levskaya A; Tian L; Lin JY; Boyden ES
    J Neurosci; 2010 Nov; 30(45):14998-5004. PubMed ID: 21068304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optogenetic approaches for functional mouse brain mapping.
    Lim DH; Ledue J; Mohajerani MH; Vanni MP; Murphy TH
    Front Neurosci; 2013; 7():54. PubMed ID: 23596383
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cardiac optical mapping - State-of-the-art and future challenges.
    O'Shea C; Kabir SN; Holmes AP; Lei M; Fabritz L; Rajpoot K; Pavlovic D
    Int J Biochem Cell Biol; 2020 Sep; 126():105804. PubMed ID: 32681973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiparametric optical mapping of the Langendorff-perfused rabbit heart.
    Lou Q; Li W; Efimov IR
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21946767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.